მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

2x-5y=-21,3x+2y=-4
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2x-5y=-21
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2x=5y-21
მიუმატეთ 5y განტოლების ორივე მხარეს.
x=\frac{1}{2}\left(5y-21\right)
ორივე მხარე გაყავით 2-ზე.
x=\frac{5}{2}y-\frac{21}{2}
გაამრავლეთ \frac{1}{2}-ზე 5y-21.
3\left(\frac{5}{2}y-\frac{21}{2}\right)+2y=-4
ჩაანაცვლეთ \frac{5y-21}{2}-ით x მეორე განტოლებაში, 3x+2y=-4.
\frac{15}{2}y-\frac{63}{2}+2y=-4
გაამრავლეთ 3-ზე \frac{5y-21}{2}.
\frac{19}{2}y-\frac{63}{2}=-4
მიუმატეთ \frac{15y}{2} 2y-ს.
\frac{19}{2}y=\frac{55}{2}
მიუმატეთ \frac{63}{2} განტოლების ორივე მხარეს.
y=\frac{55}{19}
განტოლების ორივე მხარე გაყავით \frac{19}{2}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{5}{2}\times \frac{55}{19}-\frac{21}{2}
ჩაანაცვლეთ \frac{55}{19}-ით y აქ: x=\frac{5}{2}y-\frac{21}{2}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{275}{38}-\frac{21}{2}
გაამრავლეთ \frac{5}{2}-ზე \frac{55}{19} მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრებამდე.
x=-\frac{62}{19}
მიუმატეთ -\frac{21}{2} \frac{275}{38}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=-\frac{62}{19},y=\frac{55}{19}
სისტემა ახლა ამოხსნილია.
2x-5y=-21,3x+2y=-4
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&-5\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-21\\-4\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&-5\\3&2\end{matrix}\right))\left(\begin{matrix}2&-5\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\3&2\end{matrix}\right))\left(\begin{matrix}-21\\-4\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&-5\\3&2\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\3&2\end{matrix}\right))\left(\begin{matrix}-21\\-4\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\3&2\end{matrix}\right))\left(\begin{matrix}-21\\-4\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-5\times 3\right)}&-\frac{-5}{2\times 2-\left(-5\times 3\right)}\\-\frac{3}{2\times 2-\left(-5\times 3\right)}&\frac{2}{2\times 2-\left(-5\times 3\right)}\end{matrix}\right)\left(\begin{matrix}-21\\-4\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}&\frac{5}{19}\\-\frac{3}{19}&\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}-21\\-4\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}\left(-21\right)+\frac{5}{19}\left(-4\right)\\-\frac{3}{19}\left(-21\right)+\frac{2}{19}\left(-4\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{62}{19}\\\frac{55}{19}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=-\frac{62}{19},y=\frac{55}{19}
ამოიღეთ მატრიცის ელემენტები - x და y.
2x-5y=-21,3x+2y=-4
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3\times 2x+3\left(-5\right)y=3\left(-21\right),2\times 3x+2\times 2y=2\left(-4\right)
იმისათვის, რომ 2x და 3x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 3-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 2-ზე.
6x-15y=-63,6x+4y=-8
გაამარტივეთ.
6x-6x-15y-4y=-63+8
გამოაკელით 6x+4y=-8 6x-15y=-63-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-15y-4y=-63+8
მიუმატეთ 6x -6x-ს. პირობები 6x და -6x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-19y=-63+8
მიუმატეთ -15y -4y-ს.
-19y=-55
მიუმატეთ -63 8-ს.
y=\frac{55}{19}
ორივე მხარე გაყავით -19-ზე.
3x+2\times \frac{55}{19}=-4
ჩაანაცვლეთ \frac{55}{19}-ით y აქ: 3x+2y=-4. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
3x+\frac{110}{19}=-4
გაამრავლეთ 2-ზე \frac{55}{19}.
3x=-\frac{186}{19}
გამოაკელით \frac{110}{19} განტოლების ორივე მხარეს.
x=-\frac{62}{19}
ორივე მხარე გაყავით 3-ზე.
x=-\frac{62}{19},y=\frac{55}{19}
სისტემა ახლა ამოხსნილია.