ამოხსნა x, y-ისთვის
x = \frac{155}{7} = 22\frac{1}{7} \approx 22.142857143
y=\frac{5}{7}\approx 0.714285714
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
2x+y=45,3x+5y=70
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2x+y=45
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2x=-y+45
გამოაკელით y განტოლების ორივე მხარეს.
x=\frac{1}{2}\left(-y+45\right)
ორივე მხარე გაყავით 2-ზე.
x=-\frac{1}{2}y+\frac{45}{2}
გაამრავლეთ \frac{1}{2}-ზე -y+45.
3\left(-\frac{1}{2}y+\frac{45}{2}\right)+5y=70
ჩაანაცვლეთ \frac{-y+45}{2}-ით x მეორე განტოლებაში, 3x+5y=70.
-\frac{3}{2}y+\frac{135}{2}+5y=70
გაამრავლეთ 3-ზე \frac{-y+45}{2}.
\frac{7}{2}y+\frac{135}{2}=70
მიუმატეთ -\frac{3y}{2} 5y-ს.
\frac{7}{2}y=\frac{5}{2}
გამოაკელით \frac{135}{2} განტოლების ორივე მხარეს.
y=\frac{5}{7}
განტოლების ორივე მხარე გაყავით \frac{7}{2}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=-\frac{1}{2}\times \frac{5}{7}+\frac{45}{2}
ჩაანაცვლეთ \frac{5}{7}-ით y აქ: x=-\frac{1}{2}y+\frac{45}{2}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-\frac{5}{14}+\frac{45}{2}
გაამრავლეთ -\frac{1}{2}-ზე \frac{5}{7} მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრებამდე.
x=\frac{155}{7}
მიუმატეთ \frac{45}{2} -\frac{5}{14}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=\frac{155}{7},y=\frac{5}{7}
სისტემა ახლა ამოხსნილია.
2x+y=45,3x+5y=70
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&1\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\70\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&1\\3&5\end{matrix}\right))\left(\begin{matrix}2&1\\3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&5\end{matrix}\right))\left(\begin{matrix}45\\70\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&1\\3&5\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&5\end{matrix}\right))\left(\begin{matrix}45\\70\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&5\end{matrix}\right))\left(\begin{matrix}45\\70\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2\times 5-3}&-\frac{1}{2\times 5-3}\\-\frac{3}{2\times 5-3}&\frac{2}{2\times 5-3}\end{matrix}\right)\left(\begin{matrix}45\\70\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}&-\frac{1}{7}\\-\frac{3}{7}&\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}45\\70\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}\times 45-\frac{1}{7}\times 70\\-\frac{3}{7}\times 45+\frac{2}{7}\times 70\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{155}{7}\\\frac{5}{7}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=\frac{155}{7},y=\frac{5}{7}
ამოიღეთ მატრიცის ელემენტები - x და y.
2x+y=45,3x+5y=70
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3\times 2x+3y=3\times 45,2\times 3x+2\times 5y=2\times 70
იმისათვის, რომ 2x და 3x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 3-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 2-ზე.
6x+3y=135,6x+10y=140
გაამარტივეთ.
6x-6x+3y-10y=135-140
გამოაკელით 6x+10y=140 6x+3y=135-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
3y-10y=135-140
მიუმატეთ 6x -6x-ს. პირობები 6x და -6x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-7y=135-140
მიუმატეთ 3y -10y-ს.
-7y=-5
მიუმატეთ 135 -140-ს.
y=\frac{5}{7}
ორივე მხარე გაყავით -7-ზე.
3x+5\times \frac{5}{7}=70
ჩაანაცვლეთ \frac{5}{7}-ით y აქ: 3x+5y=70. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
3x+\frac{25}{7}=70
გაამრავლეთ 5-ზე \frac{5}{7}.
3x=\frac{465}{7}
გამოაკელით \frac{25}{7} განტოლების ორივე მხარეს.
x=\frac{155}{7}
ორივე მხარე გაყავით 3-ზე.
x=\frac{155}{7},y=\frac{5}{7}
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}