მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

2x+y=4,3x+y=2
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2x+y=4
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2x=-y+4
გამოაკელით y განტოლების ორივე მხარეს.
x=\frac{1}{2}\left(-y+4\right)
ორივე მხარე გაყავით 2-ზე.
x=-\frac{1}{2}y+2
გაამრავლეთ \frac{1}{2}-ზე -y+4.
3\left(-\frac{1}{2}y+2\right)+y=2
ჩაანაცვლეთ -\frac{y}{2}+2-ით x მეორე განტოლებაში, 3x+y=2.
-\frac{3}{2}y+6+y=2
გაამრავლეთ 3-ზე -\frac{y}{2}+2.
-\frac{1}{2}y+6=2
მიუმატეთ -\frac{3y}{2} y-ს.
-\frac{1}{2}y=-4
გამოაკელით 6 განტოლების ორივე მხარეს.
y=8
ორივე მხარე გაამრავლეთ -2-ზე.
x=-\frac{1}{2}\times 8+2
ჩაანაცვლეთ 8-ით y აქ: x=-\frac{1}{2}y+2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-4+2
გაამრავლეთ -\frac{1}{2}-ზე 8.
x=-2
მიუმატეთ 2 -4-ს.
x=-2,y=8
სისტემა ახლა ამოხსნილია.
2x+y=4,3x+y=2
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&1\\3&1\end{matrix}\right))\left(\begin{matrix}2&1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&1\\3&1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\3&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-3}&-\frac{1}{2-3}\\-\frac{3}{2-3}&\frac{2}{2-3}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4+2\\3\times 4-2\times 2\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\8\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=-2,y=8
ამოიღეთ მატრიცის ელემენტები - x და y.
2x+y=4,3x+y=2
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2x-3x+y-y=4-2
გამოაკელით 3x+y=2 2x+y=4-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
2x-3x=4-2
მიუმატეთ y -y-ს. პირობები y და -y გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-x=4-2
მიუმატეთ 2x -3x-ს.
-x=2
მიუმატეთ 4 -2-ს.
x=-2
ორივე მხარე გაყავით -1-ზე.
3\left(-2\right)+y=2
ჩაანაცვლეთ -2-ით x აქ: 3x+y=2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ y.
-6+y=2
გაამრავლეთ 3-ზე -2.
y=8
მიუმატეთ 6 განტოლების ორივე მხარეს.
x=-2,y=8
სისტემა ახლა ამოხსნილია.