მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

-x+y=-6,3x-2y=10
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
-x+y=-6
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
-x=-y-6
გამოაკელით y განტოლების ორივე მხარეს.
x=-\left(-y-6\right)
ორივე მხარე გაყავით -1-ზე.
x=y+6
გაამრავლეთ -1-ზე -y-6.
3\left(y+6\right)-2y=10
ჩაანაცვლეთ y+6-ით x მეორე განტოლებაში, 3x-2y=10.
3y+18-2y=10
გაამრავლეთ 3-ზე y+6.
y+18=10
მიუმატეთ 3y -2y-ს.
y=-8
გამოაკელით 18 განტოლების ორივე მხარეს.
x=-8+6
ჩაანაცვლეთ -8-ით y აქ: x=y+6. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-2
მიუმატეთ 6 -8-ს.
x=-2,y=-8
სისტემა ახლა ამოხსნილია.
-x+y=-6,3x-2y=10
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\10\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}-1&1\\3&-2\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&-2\end{matrix}\right))\left(\begin{matrix}-6\\10\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-\left(-2\right)-3}&-\frac{1}{-\left(-2\right)-3}\\-\frac{3}{-\left(-2\right)-3}&-\frac{1}{-\left(-2\right)-3}\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&1\\3&1\end{matrix}\right)\left(\begin{matrix}-6\\10\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\left(-6\right)+10\\3\left(-6\right)+10\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-8\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=-2,y=-8
ამოიღეთ მატრიცის ელემენტები - x და y.
-x+y=-6,3x-2y=10
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3\left(-1\right)x+3y=3\left(-6\right),-3x-\left(-2y\right)=-10
იმისათვის, რომ -x და 3x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 3-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს -1-ზე.
-3x+3y=-18,-3x+2y=-10
გაამარტივეთ.
-3x+3x+3y-2y=-18+10
გამოაკელით -3x+2y=-10 -3x+3y=-18-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
3y-2y=-18+10
მიუმატეთ -3x 3x-ს. პირობები -3x და 3x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
y=-18+10
მიუმატეთ 3y -2y-ს.
y=-8
მიუმატეთ -18 10-ს.
3x-2\left(-8\right)=10
ჩაანაცვლეთ -8-ით y აქ: 3x-2y=10. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
3x+16=10
გაამრავლეთ -2-ზე -8.
3x=-6
გამოაკელით 16 განტოლების ორივე მხარეს.
x=-2
ორივე მხარე გაყავით 3-ზე.
x=-2,y=-8
სისტემა ახლა ამოხსნილია.