შეფასება
x^{3}-x^{2}-2i
დაშლა
x^{3}-x^{2}-2i
გაზიარება
კოპირებულია ბუფერში
x\left(x^{2}-ix-\left(1+i\right)\right)+\left(-1+i\right)\left(x^{2}-ix-\left(1+i\right)\right)+\left(-2-2i\right)
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ x-1+i x^{2}-ix-\left(1+i\right)-ზე და დააჯგუფეთ მსგავსი წევრები.
x\left(x^{2}-ix+\left(-1-i\right)\right)+\left(-1+i\right)\left(x^{2}-ix-\left(1+i\right)\right)+\left(-2-2i\right)
გადაამრავლეთ -1 და 1+i, რათა მიიღოთ -1-i.
x^{3}-ix^{2}+\left(-1-i\right)x+\left(-1+i\right)\left(x^{2}-ix-\left(1+i\right)\right)+\left(-2-2i\right)
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x x^{2}-ix+\left(-1-i\right)-ზე.
x^{3}-ix^{2}+\left(-1-i\right)x+\left(-1+i\right)\left(x^{2}-ix+\left(-1-i\right)\right)+\left(-2-2i\right)
გადაამრავლეთ -1 და 1+i, რათა მიიღოთ -1-i.
x^{3}-ix^{2}+\left(-1-i\right)x+\left(-1+i\right)x^{2}+\left(1+i\right)x+2+\left(-2-2i\right)
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ -1+i x^{2}-ix+\left(-1-i\right)-ზე.
x^{3}-ix^{2}+\left(-1-i\right)x+\left(-1+i\right)x^{2}+\left(1+i\right)x-2i
შეასრულეთ მიმატება.
x^{3}-x^{2}+\left(-1-i\right)x+\left(1+i\right)x-2i
დააჯგუფეთ -ix^{2} და \left(-1+i\right)x^{2}, რათა მიიღოთ -x^{2}.
x^{3}-x^{2}-2i
დააჯგუფეთ \left(-1-i\right)x და \left(1+i\right)x, რათა მიიღოთ 0.
x\left(x^{2}-ix-\left(1+i\right)\right)+\left(-1+i\right)\left(x^{2}-ix-\left(1+i\right)\right)+\left(-2-2i\right)
გამოიყენეთ განაწილების თვისება, რათა გაამრავლოთ x-1+i x^{2}-ix-\left(1+i\right)-ზე და დააჯგუფეთ მსგავსი წევრები.
x\left(x^{2}-ix+\left(-1-i\right)\right)+\left(-1+i\right)\left(x^{2}-ix-\left(1+i\right)\right)+\left(-2-2i\right)
გადაამრავლეთ -1 და 1+i, რათა მიიღოთ -1-i.
x^{3}-ix^{2}+\left(-1-i\right)x+\left(-1+i\right)\left(x^{2}-ix-\left(1+i\right)\right)+\left(-2-2i\right)
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ x x^{2}-ix+\left(-1-i\right)-ზე.
x^{3}-ix^{2}+\left(-1-i\right)x+\left(-1+i\right)\left(x^{2}-ix+\left(-1-i\right)\right)+\left(-2-2i\right)
გადაამრავლეთ -1 და 1+i, რათა მიიღოთ -1-i.
x^{3}-ix^{2}+\left(-1-i\right)x+\left(-1+i\right)x^{2}+\left(1+i\right)x+2+\left(-2-2i\right)
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ -1+i x^{2}-ix+\left(-1-i\right)-ზე.
x^{3}-ix^{2}+\left(-1-i\right)x+\left(-1+i\right)x^{2}+\left(1+i\right)x-2i
შეასრულეთ მიმატება.
x^{3}-x^{2}+\left(-1-i\right)x+\left(1+i\right)x-2i
დააჯგუფეთ -ix^{2} და \left(-1+i\right)x^{2}, რათა მიიღოთ -x^{2}.
x^{3}-x^{2}-2i
დააჯგუფეთ \left(-1-i\right)x და \left(1+i\right)x, რათა მიიღოთ 0.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}