მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\frac{1}{4}x+\frac{1}{3}y=0,\frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
\frac{1}{4}x+\frac{1}{3}y=0
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
\frac{1}{4}x=-\frac{1}{3}y
გამოაკელით \frac{y}{3} განტოლების ორივე მხარეს.
x=4\left(-\frac{1}{3}\right)y
ორივე მხარე გაამრავლეთ 4-ზე.
x=-\frac{4}{3}y
გაამრავლეთ 4-ზე -\frac{y}{3}.
\frac{1}{2}\left(-\frac{4}{3}\right)y+\frac{1}{6}y=-\frac{3}{2}
ჩაანაცვლეთ -\frac{4y}{3}-ით x მეორე განტოლებაში, \frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}.
-\frac{2}{3}y+\frac{1}{6}y=-\frac{3}{2}
გაამრავლეთ \frac{1}{2}-ზე -\frac{4y}{3}.
-\frac{1}{2}y=-\frac{3}{2}
მიუმატეთ -\frac{2y}{3} \frac{y}{6}-ს.
y=3
ორივე მხარე გაამრავლეთ -2-ზე.
x=-\frac{4}{3}\times 3
ჩაანაცვლეთ 3-ით y აქ: x=-\frac{4}{3}y. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-4
გაამრავლეთ -\frac{4}{3}-ზე 3.
x=-4,y=3
სისტემა ახლა ამოხსნილია.
\frac{1}{4}x+\frac{1}{3}y=0,\frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\\frac{1}{2}&\frac{1}{6}\end{matrix}\right))\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{6}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}&-\frac{\frac{1}{3}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}\\-\frac{\frac{1}{2}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}&\frac{\frac{1}{4}}{\frac{1}{4}\times \frac{1}{6}-\frac{1}{3}\times \frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{3}&\frac{8}{3}\\4&-2\end{matrix}\right)\left(\begin{matrix}0\\-\frac{3}{2}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3}\left(-\frac{3}{2}\right)\\-2\left(-\frac{3}{2}\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\3\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=-4,y=3
ამოიღეთ მატრიცის ელემენტები - x და y.
\frac{1}{4}x+\frac{1}{3}y=0,\frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
\frac{1}{2}\times \frac{1}{4}x+\frac{1}{2}\times \frac{1}{3}y=0,\frac{1}{4}\times \frac{1}{2}x+\frac{1}{4}\times \frac{1}{6}y=\frac{1}{4}\left(-\frac{3}{2}\right)
იმისათვის, რომ \frac{x}{4} და \frac{x}{2} ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს \frac{1}{2}-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს \frac{1}{4}-ზე.
\frac{1}{8}x+\frac{1}{6}y=0,\frac{1}{8}x+\frac{1}{24}y=-\frac{3}{8}
გაამარტივეთ.
\frac{1}{8}x-\frac{1}{8}x+\frac{1}{6}y-\frac{1}{24}y=\frac{3}{8}
გამოაკელით \frac{1}{8}x+\frac{1}{24}y=-\frac{3}{8} \frac{1}{8}x+\frac{1}{6}y=0-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
\frac{1}{6}y-\frac{1}{24}y=\frac{3}{8}
მიუმატეთ \frac{x}{8} -\frac{x}{8}-ს. პირობები \frac{x}{8} და -\frac{x}{8} გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
\frac{1}{8}y=\frac{3}{8}
მიუმატეთ \frac{y}{6} -\frac{y}{24}-ს.
y=3
ორივე მხარე გაამრავლეთ 8-ზე.
\frac{1}{2}x+\frac{1}{6}\times 3=-\frac{3}{2}
ჩაანაცვლეთ 3-ით y აქ: \frac{1}{2}x+\frac{1}{6}y=-\frac{3}{2}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
\frac{1}{2}x+\frac{1}{2}=-\frac{3}{2}
გაამრავლეთ \frac{1}{6}-ზე 3.
\frac{1}{2}x=-2
გამოაკელით \frac{1}{2} განტოლების ორივე მხარეს.
x=-4
ორივე მხარე გაამრავლეთ 2-ზე.
x=-4,y=3
სისტემა ახლა ამოხსნილია.