მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=-5 ab=1\times 4=4
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც x^{2}+ax+bx+4. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
-1,-4 -2,-2
რადგან ab დადებითია, a-სა და b-ს ერთნაირი ნიშნები აქვთ. რადგან a+b უარყოფითია, ორივე, a და b უარყოფითია. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია 4.
-1-4=-5 -2-2=-4
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-4 b=-1
ამონახსნი არის წყვილი, რომლის ჯამია -5.
\left(x^{2}-4x\right)+\left(-x+4\right)
ხელახლა დაწერეთ x^{2}-5x+4, როგორც \left(x^{2}-4x\right)+\left(-x+4\right).
x\left(x-4\right)-\left(x-4\right)
x-ის პირველ, -1-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(x-4\right)\left(x-1\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-4 დისტრიბუციული თვისების გამოყენებით.
x^{2}-5x+4=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 4}}{2}
აიყვანეთ კვადრატში -5.
x=\frac{-\left(-5\right)±\sqrt{25-16}}{2}
გაამრავლეთ -4-ზე 4.
x=\frac{-\left(-5\right)±\sqrt{9}}{2}
მიუმატეთ 25 -16-ს.
x=\frac{-\left(-5\right)±3}{2}
აიღეთ 9-ის კვადრატული ფესვი.
x=\frac{5±3}{2}
-5-ის საპირისპიროა 5.
x=\frac{8}{2}
ახლა ამოხსენით განტოლება x=\frac{5±3}{2} როცა ± პლიუსია. მიუმატეთ 5 3-ს.
x=4
გაყავით 8 2-ზე.
x=\frac{2}{2}
ახლა ამოხსენით განტოლება x=\frac{5±3}{2} როცა ± მინუსია. გამოაკელით 3 5-ს.
x=1
გაყავით 2 2-ზე.
x^{2}-5x+4=\left(x-4\right)\left(x-1\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით 4 x_{1}-ისთვის და 1 x_{2}-ისთვის.