ამოხსნა x, y-ისთვის
x = \frac{9}{8} = 1\frac{1}{8} = 1.125
y = \frac{11}{4} = 2\frac{3}{4} = 2.75
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
2x+y=5,-4x+6y=12
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2x+y=5
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2x=-y+5
გამოაკელით y განტოლების ორივე მხარეს.
x=\frac{1}{2}\left(-y+5\right)
ორივე მხარე გაყავით 2-ზე.
x=-\frac{1}{2}y+\frac{5}{2}
გაამრავლეთ \frac{1}{2}-ზე -y+5.
-4\left(-\frac{1}{2}y+\frac{5}{2}\right)+6y=12
ჩაანაცვლეთ \frac{-y+5}{2}-ით x მეორე განტოლებაში, -4x+6y=12.
2y-10+6y=12
გაამრავლეთ -4-ზე \frac{-y+5}{2}.
8y-10=12
მიუმატეთ 2y 6y-ს.
8y=22
მიუმატეთ 10 განტოლების ორივე მხარეს.
y=\frac{11}{4}
ორივე მხარე გაყავით 8-ზე.
x=-\frac{1}{2}\times \frac{11}{4}+\frac{5}{2}
ჩაანაცვლეთ \frac{11}{4}-ით y აქ: x=-\frac{1}{2}y+\frac{5}{2}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-\frac{11}{8}+\frac{5}{2}
გაამრავლეთ -\frac{1}{2}-ზე \frac{11}{4} მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრებამდე.
x=\frac{9}{8}
მიუმატეთ \frac{5}{2} -\frac{11}{8}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=\frac{9}{8},y=\frac{11}{4}
სისტემა ახლა ამოხსნილია.
2x+y=5,-4x+6y=12
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&1\\-4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\12\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&1\\-4&6\end{matrix}\right))\left(\begin{matrix}2&1\\-4&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&6\end{matrix}\right))\left(\begin{matrix}5\\12\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&1\\-4&6\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&6\end{matrix}\right))\left(\begin{matrix}5\\12\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-4&6\end{matrix}\right))\left(\begin{matrix}5\\12\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{2\times 6-\left(-4\right)}&-\frac{1}{2\times 6-\left(-4\right)}\\-\frac{-4}{2\times 6-\left(-4\right)}&\frac{2}{2\times 6-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}5\\12\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}&-\frac{1}{16}\\\frac{1}{4}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}5\\12\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{8}\times 5-\frac{1}{16}\times 12\\\frac{1}{4}\times 5+\frac{1}{8}\times 12\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{8}\\\frac{11}{4}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=\frac{9}{8},y=\frac{11}{4}
ამოიღეთ მატრიცის ელემენტები - x და y.
2x+y=5,-4x+6y=12
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
-4\times 2x-4y=-4\times 5,2\left(-4\right)x+2\times 6y=2\times 12
იმისათვის, რომ 2x და -4x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს -4-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 2-ზე.
-8x-4y=-20,-8x+12y=24
გაამარტივეთ.
-8x+8x-4y-12y=-20-24
გამოაკელით -8x+12y=24 -8x-4y=-20-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-4y-12y=-20-24
მიუმატეთ -8x 8x-ს. პირობები -8x და 8x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-16y=-20-24
მიუმატეთ -4y -12y-ს.
-16y=-44
მიუმატეთ -20 -24-ს.
y=\frac{11}{4}
ორივე მხარე გაყავით -16-ზე.
-4x+6\times \frac{11}{4}=12
ჩაანაცვლეთ \frac{11}{4}-ით y აქ: -4x+6y=12. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
-4x+\frac{33}{2}=12
გაამრავლეთ 6-ზე \frac{11}{4}.
-4x=-\frac{9}{2}
გამოაკელით \frac{33}{2} განტოლების ორივე მხარეს.
x=\frac{9}{8}
ორივე მხარე გაყავით -4-ზე.
x=\frac{9}{8},y=\frac{11}{4}
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}