\left\{ \begin{array}{l}{ x + 2 y = 3 }\\{ y - 2 z = - 6 }\\{ - 3 x - 5 y + 6 z = - 31 }\end{array} \right.
ამოხსნა x, y, z-ისთვის
x=23
y=-10
z=-2
გაზიარება
კოპირებულია ბუფერში
x=-2y+3
ამოხსენით x+2y=3 x-თვის.
-3\left(-2y+3\right)-5y+6z=-31
ჩაანაცვლეთ -2y+3-ით x განტოლებაში, -3x-5y+6z=-31.
y=-6+2z z=-\frac{1}{6}y-\frac{11}{3}
ამოხსენით მეორე განტოლება y-თვის და მესამე განტოლება z-თვის.
z=-\frac{1}{6}\left(-6+2z\right)-\frac{11}{3}
ჩაანაცვლეთ -6+2z-ით y განტოლებაში, z=-\frac{1}{6}y-\frac{11}{3}.
z=-2
ამოხსენით z=-\frac{1}{6}\left(-6+2z\right)-\frac{11}{3} z-თვის.
y=-6+2\left(-2\right)
ჩაანაცვლეთ -2-ით z განტოლებაში, y=-6+2z.
y=-10
გამოითვალეთ y y=-6+2\left(-2\right)-დან.
x=-2\left(-10\right)+3
ჩაანაცვლეთ -10-ით y განტოლებაში, x=-2y+3.
x=23
გამოითვალეთ x x=-2\left(-10\right)+3-დან.
x=23 y=-10 z=-2
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}