\left\{ \begin{array} { r } { 4 x - 3 y + z = - 20 } \\ { - 2 x + y - 3 z = - 8 } \\ { x - y + 2 z = 7 } \end{array} \right.
ამოხსნა x, y, z-ისთვის
x=-6
y=1
z=7
გაზიარება
კოპირებულია ბუფერში
z=-4x+3y-20
ამოხსენით 4x-3y+z=-20 z-თვის.
-2x+y-3\left(-4x+3y-20\right)=-8 x-y+2\left(-4x+3y-20\right)=7
ჩაანაცვლეთ -4x+3y-20-ით z მეორე და მესამე განტოლებაში.
y=\frac{17}{2}+\frac{5}{4}x x=\frac{5}{7}y-\frac{47}{7}
ამოხსენით ეს განტოლება y-თვის და x-თვის შესაბამისად.
x=\frac{5}{7}\left(\frac{17}{2}+\frac{5}{4}x\right)-\frac{47}{7}
ჩაანაცვლეთ \frac{17}{2}+\frac{5}{4}x-ით y განტოლებაში, x=\frac{5}{7}y-\frac{47}{7}.
x=-6
ამოხსენით x=\frac{5}{7}\left(\frac{17}{2}+\frac{5}{4}x\right)-\frac{47}{7} x-თვის.
y=\frac{17}{2}+\frac{5}{4}\left(-6\right)
ჩაანაცვლეთ -6-ით x განტოლებაში, y=\frac{17}{2}+\frac{5}{4}x.
y=1
გამოითვალეთ y y=\frac{17}{2}+\frac{5}{4}\left(-6\right)-დან.
z=-4\left(-6\right)+3\times 1-20
ჩაანაცვლეთ 1-ით y და -6-ით x განტოლებაში, z=-4x+3y-20.
z=7
გამოითვალეთ z z=-4\left(-6\right)+3\times 1-20-დან.
x=-6 y=1 z=7
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}