მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x-3y=2
განიხილეთ პირველი განტოლება. გამოაკელით 3y ორივე მხარეს.
x-3y=2,x+3y=8
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x-3y=2
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=3y+2
მიუმატეთ 3y განტოლების ორივე მხარეს.
3y+2+3y=8
ჩაანაცვლეთ 3y+2-ით x მეორე განტოლებაში, x+3y=8.
6y+2=8
მიუმატეთ 3y 3y-ს.
6y=6
გამოაკელით 2 განტოლების ორივე მხარეს.
y=1
ორივე მხარე გაყავით 6-ზე.
x=3+2
ჩაანაცვლეთ 1-ით y აქ: x=3y+2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=5
მიუმატეთ 2 3-ს.
x=5,y=1
სისტემა ახლა ამოხსნილია.
x-3y=2
განიხილეთ პირველი განტოლება. გამოაკელით 3y ორივე მხარეს.
x-3y=2,x+3y=8
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&-3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\8\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}1&-3\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&-3\\1&3\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-3\\1&3\end{matrix}\right))\left(\begin{matrix}2\\8\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-3\right)}&-\frac{-3}{3-\left(-3\right)}\\-\frac{1}{3-\left(-3\right)}&\frac{1}{3-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}2\\8\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 2+\frac{1}{2}\times 8\\-\frac{1}{6}\times 2+\frac{1}{6}\times 8\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=5,y=1
ამოიღეთ მატრიცის ელემენტები - x და y.
x-3y=2
განიხილეთ პირველი განტოლება. გამოაკელით 3y ორივე მხარეს.
x-3y=2,x+3y=8
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
x-x-3y-3y=2-8
გამოაკელით x+3y=8 x-3y=2-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-3y-3y=2-8
მიუმატეთ x -x-ს. პირობები x და -x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-6y=2-8
მიუმატეთ -3y -3y-ს.
-6y=-6
მიუმატეთ 2 -8-ს.
y=1
ორივე მხარე გაყავით -6-ზე.
x+3=8
ჩაანაცვლეთ 1-ით y აქ: x+3y=8. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=5
გამოაკელით 3 განტოლების ორივე მხარეს.
x=5,y=1
სისტემა ახლა ამოხსნილია.