\left\{ \begin{array} { l } { x + y = 6 } \\ { 3 x + 2 y = 13 } \end{array} \right.
ამოხსნა x, y-ისთვის
x=1
y=5
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
x+y=6,3x+2y=13
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x+y=6
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=-y+6
გამოაკელით y განტოლების ორივე მხარეს.
3\left(-y+6\right)+2y=13
ჩაანაცვლეთ -y+6-ით x მეორე განტოლებაში, 3x+2y=13.
-3y+18+2y=13
გაამრავლეთ 3-ზე -y+6.
-y+18=13
მიუმატეთ -3y 2y-ს.
-y=-5
გამოაკელით 18 განტოლების ორივე მხარეს.
y=5
ორივე მხარე გაყავით -1-ზე.
x=-5+6
ჩაანაცვლეთ 5-ით y აქ: x=-y+6. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=1
მიუმატეთ 6 -5-ს.
x=1,y=5
სისტემა ახლა ამოხსნილია.
x+y=6,3x+2y=13
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\13\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&1\\3&2\end{matrix}\right))\left(\begin{matrix}1&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&1\\3&2\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\3&2\end{matrix}\right))\left(\begin{matrix}6\\13\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-3}&-\frac{1}{2-3}\\-\frac{3}{2-3}&\frac{1}{2-3}\end{matrix}\right)\left(\begin{matrix}6\\13\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2&1\\3&-1\end{matrix}\right)\left(\begin{matrix}6\\13\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\times 6+13\\3\times 6-13\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=1,y=5
ამოიღეთ მატრიცის ელემენტები - x და y.
x+y=6,3x+2y=13
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3x+3y=3\times 6,3x+2y=13
იმისათვის, რომ x და 3x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 3-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 1-ზე.
3x+3y=18,3x+2y=13
გაამარტივეთ.
3x-3x+3y-2y=18-13
გამოაკელით 3x+2y=13 3x+3y=18-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
3y-2y=18-13
მიუმატეთ 3x -3x-ს. პირობები 3x და -3x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
y=18-13
მიუმატეთ 3y -2y-ს.
y=5
მიუმატეთ 18 -13-ს.
3x+2\times 5=13
ჩაანაცვლეთ 5-ით y აქ: 3x+2y=13. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
3x+10=13
გაამრავლეთ 2-ზე 5.
3x=3
გამოაკელით 10 განტოლების ორივე მხარეს.
x=1
ორივე მხარე გაყავით 3-ზე.
x=1,y=5
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}