მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x+4y=1,2x+y=-5
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x+4y=1
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=-4y+1
გამოაკელით 4y განტოლების ორივე მხარეს.
2\left(-4y+1\right)+y=-5
ჩაანაცვლეთ -4y+1-ით x მეორე განტოლებაში, 2x+y=-5.
-8y+2+y=-5
გაამრავლეთ 2-ზე -4y+1.
-7y+2=-5
მიუმატეთ -8y y-ს.
-7y=-7
გამოაკელით 2 განტოლების ორივე მხარეს.
y=1
ორივე მხარე გაყავით -7-ზე.
x=-4+1
ჩაანაცვლეთ 1-ით y აქ: x=-4y+1. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-3
მიუმატეთ 1 -4-ს.
x=-3,y=1
სისტემა ახლა ამოხსნილია.
x+4y=1,2x+y=-5
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-5\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&4\\2&1\end{matrix}\right))\left(\begin{matrix}1&4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&4\\2&1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\2&1\end{matrix}\right))\left(\begin{matrix}1\\-5\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-4\times 2}&-\frac{4}{1-4\times 2}\\-\frac{2}{1-4\times 2}&\frac{1}{1-4\times 2}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&\frac{4}{7}\\\frac{2}{7}&-\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}1\\-5\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}+\frac{4}{7}\left(-5\right)\\\frac{2}{7}-\frac{1}{7}\left(-5\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=-3,y=1
ამოიღეთ მატრიცის ელემენტები - x და y.
x+4y=1,2x+y=-5
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2x+2\times 4y=2,2x+y=-5
იმისათვის, რომ x და 2x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 2-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 1-ზე.
2x+8y=2,2x+y=-5
გაამარტივეთ.
2x-2x+8y-y=2+5
გამოაკელით 2x+y=-5 2x+8y=2-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
8y-y=2+5
მიუმატეთ 2x -2x-ს. პირობები 2x და -2x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
7y=2+5
მიუმატეთ 8y -y-ს.
7y=7
მიუმატეთ 2 5-ს.
y=1
ორივე მხარე გაყავით 7-ზე.
2x+1=-5
ჩაანაცვლეთ 1-ით y აქ: 2x+y=-5. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
2x=-6
გამოაკელით 1 განტოლების ორივე მხარეს.
x=-3
ორივე მხარე გაყავით 2-ზე.
x=-3,y=1
სისტემა ახლა ამოხსნილია.