\left\{ \begin{array} { l } { 4 x - 2 y = 8 } \\ { 5 x + 3 y = - 1 } \end{array} \right.
ამოხსნა x, y-ისთვის
x=1
y=-2
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
4x-2y=8,5x+3y=-1
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
4x-2y=8
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
4x=2y+8
მიუმატეთ 2y განტოლების ორივე მხარეს.
x=\frac{1}{4}\left(2y+8\right)
ორივე მხარე გაყავით 4-ზე.
x=\frac{1}{2}y+2
გაამრავლეთ \frac{1}{4}-ზე 8+2y.
5\left(\frac{1}{2}y+2\right)+3y=-1
ჩაანაცვლეთ \frac{y}{2}+2-ით x მეორე განტოლებაში, 5x+3y=-1.
\frac{5}{2}y+10+3y=-1
გაამრავლეთ 5-ზე \frac{y}{2}+2.
\frac{11}{2}y+10=-1
მიუმატეთ \frac{5y}{2} 3y-ს.
\frac{11}{2}y=-11
გამოაკელით 10 განტოლების ორივე მხარეს.
y=-2
განტოლების ორივე მხარე გაყავით \frac{11}{2}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{1}{2}\left(-2\right)+2
ჩაანაცვლეთ -2-ით y აქ: x=\frac{1}{2}y+2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-1+2
გაამრავლეთ \frac{1}{2}-ზე -2.
x=1
მიუმატეთ 2 -1-ს.
x=1,y=-2
სისტემა ახლა ამოხსნილია.
4x-2y=8,5x+3y=-1
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}4&-2\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-1\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}4&-2\\5&3\end{matrix}\right))\left(\begin{matrix}4&-2\\5&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\5&3\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}4&-2\\5&3\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\5&3\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\5&3\end{matrix}\right))\left(\begin{matrix}8\\-1\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-\left(-2\times 5\right)}&-\frac{-2}{4\times 3-\left(-2\times 5\right)}\\-\frac{5}{4\times 3-\left(-2\times 5\right)}&\frac{4}{4\times 3-\left(-2\times 5\right)}\end{matrix}\right)\left(\begin{matrix}8\\-1\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}&\frac{1}{11}\\-\frac{5}{22}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}8\\-1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}\times 8+\frac{1}{11}\left(-1\right)\\-\frac{5}{22}\times 8+\frac{2}{11}\left(-1\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\-2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=1,y=-2
ამოიღეთ მატრიცის ელემენტები - x და y.
4x-2y=8,5x+3y=-1
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
5\times 4x+5\left(-2\right)y=5\times 8,4\times 5x+4\times 3y=4\left(-1\right)
იმისათვის, რომ 4x და 5x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 5-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 4-ზე.
20x-10y=40,20x+12y=-4
გაამარტივეთ.
20x-20x-10y-12y=40+4
გამოაკელით 20x+12y=-4 20x-10y=40-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-10y-12y=40+4
მიუმატეთ 20x -20x-ს. პირობები 20x და -20x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-22y=40+4
მიუმატეთ -10y -12y-ს.
-22y=44
მიუმატეთ 40 4-ს.
y=-2
ორივე მხარე გაყავით -22-ზე.
5x+3\left(-2\right)=-1
ჩაანაცვლეთ -2-ით y აქ: 5x+3y=-1. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
5x-6=-1
გაამრავლეთ 3-ზე -2.
5x=5
მიუმატეთ 6 განტოლების ორივე მხარეს.
x=1
ორივე მხარე გაყავით 5-ზე.
x=1,y=-2
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}