მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

4x-2y=6,x+2y=4
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
4x-2y=6
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
4x=2y+6
მიუმატეთ 2y განტოლების ორივე მხარეს.
x=\frac{1}{4}\left(2y+6\right)
ორივე მხარე გაყავით 4-ზე.
x=\frac{1}{2}y+\frac{3}{2}
გაამრავლეთ \frac{1}{4}-ზე 6+2y.
\frac{1}{2}y+\frac{3}{2}+2y=4
ჩაანაცვლეთ \frac{3+y}{2}-ით x მეორე განტოლებაში, x+2y=4.
\frac{5}{2}y+\frac{3}{2}=4
მიუმატეთ \frac{y}{2} 2y-ს.
\frac{5}{2}y=\frac{5}{2}
გამოაკელით \frac{3}{2} განტოლების ორივე მხარეს.
y=1
განტოლების ორივე მხარე გაყავით \frac{5}{2}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{1+3}{2}
ჩაანაცვლეთ 1-ით y აქ: x=\frac{1}{2}y+\frac{3}{2}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=2
მიუმატეთ \frac{3}{2} \frac{1}{2}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=2,y=1
სისტემა ახლა ამოხსნილია.
4x-2y=6,x+2y=4
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}4&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\4\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}4&-2\\1&2\end{matrix}\right))\left(\begin{matrix}4&-2\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\1&2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}4&-2\\1&2\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\1&2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\1&2\end{matrix}\right))\left(\begin{matrix}6\\4\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-2\right)}&-\frac{-2}{4\times 2-\left(-2\right)}\\-\frac{1}{4\times 2-\left(-2\right)}&\frac{4}{4\times 2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\-\frac{1}{10}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}6\\4\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\times 6+\frac{1}{5}\times 4\\-\frac{1}{10}\times 6+\frac{2}{5}\times 4\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=2,y=1
ამოიღეთ მატრიცის ელემენტები - x და y.
4x-2y=6,x+2y=4
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
4x-2y=6,4x+4\times 2y=4\times 4
იმისათვის, რომ 4x და x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 1-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 4-ზე.
4x-2y=6,4x+8y=16
გაამარტივეთ.
4x-4x-2y-8y=6-16
გამოაკელით 4x+8y=16 4x-2y=6-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-2y-8y=6-16
მიუმატეთ 4x -4x-ს. პირობები 4x და -4x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-10y=6-16
მიუმატეთ -2y -8y-ს.
-10y=-10
მიუმატეთ 6 -16-ს.
y=1
ორივე მხარე გაყავით -10-ზე.
x+2=4
ჩაანაცვლეთ 1-ით y აქ: x+2y=4. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=2
გამოაკელით 2 განტოლების ორივე მხარეს.
x=2,y=1
სისტემა ახლა ამოხსნილია.