\left\{ \begin{array} { l } { - 4 x + y = - 15 } \\ { 2 x - 3 y = 5 } \end{array} \right.
ამოხსნა x, y-ისთვის
x=4
y=1
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
-4x+y=-15,2x-3y=5
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
-4x+y=-15
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
-4x=-y-15
გამოაკელით y განტოლების ორივე მხარეს.
x=-\frac{1}{4}\left(-y-15\right)
ორივე მხარე გაყავით -4-ზე.
x=\frac{1}{4}y+\frac{15}{4}
გაამრავლეთ -\frac{1}{4}-ზე -y-15.
2\left(\frac{1}{4}y+\frac{15}{4}\right)-3y=5
ჩაანაცვლეთ \frac{15+y}{4}-ით x მეორე განტოლებაში, 2x-3y=5.
\frac{1}{2}y+\frac{15}{2}-3y=5
გაამრავლეთ 2-ზე \frac{15+y}{4}.
-\frac{5}{2}y+\frac{15}{2}=5
მიუმატეთ \frac{y}{2} -3y-ს.
-\frac{5}{2}y=-\frac{5}{2}
გამოაკელით \frac{15}{2} განტოლების ორივე მხარეს.
y=1
განტოლების ორივე მხარე გაყავით -\frac{5}{2}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{1+15}{4}
ჩაანაცვლეთ 1-ით y აქ: x=\frac{1}{4}y+\frac{15}{4}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=4
მიუმატეთ \frac{15}{4} \frac{1}{4}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=4,y=1
სისტემა ახლა ამოხსნილია.
-4x+y=-15,2x-3y=5
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}-4&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-15\\5\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}-4&1\\2&-3\end{matrix}\right))\left(\begin{matrix}-4&1\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&1\\2&-3\end{matrix}\right))\left(\begin{matrix}-15\\5\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}-4&1\\2&-3\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&1\\2&-3\end{matrix}\right))\left(\begin{matrix}-15\\5\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&1\\2&-3\end{matrix}\right))\left(\begin{matrix}-15\\5\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-4\left(-3\right)-2}&-\frac{1}{-4\left(-3\right)-2}\\-\frac{2}{-4\left(-3\right)-2}&-\frac{4}{-4\left(-3\right)-2}\end{matrix}\right)\left(\begin{matrix}-15\\5\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{10}&-\frac{1}{10}\\-\frac{1}{5}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}-15\\5\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{10}\left(-15\right)-\frac{1}{10}\times 5\\-\frac{1}{5}\left(-15\right)-\frac{2}{5}\times 5\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=4,y=1
ამოიღეთ მატრიცის ელემენტები - x და y.
-4x+y=-15,2x-3y=5
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2\left(-4\right)x+2y=2\left(-15\right),-4\times 2x-4\left(-3\right)y=-4\times 5
იმისათვის, რომ -4x და 2x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 2-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს -4-ზე.
-8x+2y=-30,-8x+12y=-20
გაამარტივეთ.
-8x+8x+2y-12y=-30+20
გამოაკელით -8x+12y=-20 -8x+2y=-30-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
2y-12y=-30+20
მიუმატეთ -8x 8x-ს. პირობები -8x და 8x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-10y=-30+20
მიუმატეთ 2y -12y-ს.
-10y=-10
მიუმატეთ -30 20-ს.
y=1
ორივე მხარე გაყავით -10-ზე.
2x-3=5
ჩაანაცვლეთ 1-ით y აქ: 2x-3y=5. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
2x=8
მიუმატეთ 3 განტოლების ორივე მხარეს.
x=4
ორივე მხარე გაყავით 2-ზე.
x=4,y=1
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}