მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}\left(\frac{e^{x}-e^{x}}{2}\right)^{14}\mathrm{d}x
იმავე ფუძის ჯერადი რიცხვების გასამრავლებლად, შეკრიბეთ მათი ექსპონენტები. შეკრიბეთ 3 და 11 რომ მიიღოთ 14.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}\left(\frac{0}{2}\right)^{14}\mathrm{d}x
დააჯგუფეთ e^{x} და -e^{x}, რათა მიიღოთ 0.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}0^{14}\mathrm{d}x
თუ ნულს გავყოფთ ნებისმიერ არანულოვან რიცხვზე, მივიღებთ ნულს.
\int _{0}^{\log_{10}\left(1+\sqrt{2}\right)}0\mathrm{d}x
გამოთვალეთ14-ის 0 ხარისხი და მიიღეთ 0.
\int 0\mathrm{d}x
თავდაპირველად შეაფასეთ განუსაზღვრელი ინტეგრალი.
0
იპოვეთ0-ის ინტეგრალი, ზოგადი ინტეგრალების ცხრილის გამოყენებით, წესი \int a\mathrm{d}x=ax.
0+0
განსაზღვრული ინტეგრალი წარმოადგენს გამოსახულების ანტიდერივატივს, შეფასებულს ინტეგრირების ზედა ზღვარზე, მინუს ანტიდერივატივი, შეფასებული ინტეგრირების ქვედა ზღვარზე.
0
გაამარტივეთ.