მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int \frac{1}{\sqrt{x}}-3x+5\mathrm{d}x
თავდაპირველად შეაფასეთ განუსაზღვრელი ინტეგრალი.
\int \frac{1}{\sqrt{x}}\mathrm{d}x+\int -3x\mathrm{d}x+\int 5\mathrm{d}x
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
\int \frac{1}{\sqrt{x}}\mathrm{d}x-3\int x\mathrm{d}x+\int 5\mathrm{d}x
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
2\sqrt{x}-3\int x\mathrm{d}x+\int 5\mathrm{d}x
ხელახლა დაწერეთ \frac{1}{\sqrt{x}}, როგორც x^{-\frac{1}{2}}. რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x^{-\frac{1}{2}}\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{\frac{1}{2}}}{\frac{1}{2}}-ით. გაამარტივეთ და გარდაქმენით ექსპონენციური განტოლებიდან ფესვურ განტოლებაზე.
2\sqrt{x}-\frac{3x^{2}}{2}+\int 5\mathrm{d}x
რადგან\int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int x\mathrm{d}x უნდა ჩაანაცვლოთ \frac{x^{2}}{2}-ით. გაამრავლეთ -3-ზე \frac{x^{2}}{2}.
2\sqrt{x}-\frac{3x^{2}}{2}+5x
იპოვეთ5-ის ინტეგრალი, ზოგადი ინტეგრალების ცხრილის გამოყენებით, წესი \int a\mathrm{d}x=ax.
2\times 8^{\frac{1}{2}}-\frac{3}{2}\times 8^{2}+5\times 8-\left(2\times 1^{\frac{1}{2}}-\frac{3}{2}\times 1^{2}+5\times 1\right)
განსაზღვრული ინტეგრალი წარმოადგენს გამოსახულების ანტიდერივატივს, შეფასებულს ინტეგრირების ზედა ზღვარზე, მინუს ანტიდერივატივი, შეფასებული ინტეგრირების ქვედა ზღვარზე.
4\sqrt{2}-\frac{123}{2}
გაამარტივეთ.