მთავარ კონტენტზე გადასვლა
შეფასება
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

\int 15t^{3}-135t^{2}+225t\mathrm{d}t
თავდაპირველად შეაფასეთ განუსაზღვრელი ინტეგრალი.
\int 15t^{3}\mathrm{d}t+\int -135t^{2}\mathrm{d}t+\int 225t\mathrm{d}t
მოახდინეთ ჯამური მნიშვნელობის სათითაოდ გაინტეგრალება.
15\int t^{3}\mathrm{d}t-135\int t^{2}\mathrm{d}t+225\int t\mathrm{d}t
ფრჩხილებს გარეთ გაიტანეთ მუდმივა თითოეულისთვის.
\frac{15t^{4}}{4}-135\int t^{2}\mathrm{d}t+225\int t\mathrm{d}t
რადგან\int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int t^{3}\mathrm{d}t უნდა ჩაანაცვლოთ \frac{t^{4}}{4}-ით. გაამრავლეთ 15-ზე \frac{t^{4}}{4}.
\frac{15t^{4}}{4}-45t^{3}+225\int t\mathrm{d}t
რადგან\int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int t^{2}\mathrm{d}t უნდა ჩაანაცვლოთ \frac{t^{3}}{3}-ით. გაამრავლეთ -135-ზე \frac{t^{3}}{3}.
\frac{15t^{4}}{4}-45t^{3}+\frac{225t^{2}}{2}
რადგან\int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} წარმოადგენს k\neq -1-ს, \int t\mathrm{d}t უნდა ჩაანაცვლოთ \frac{t^{2}}{2}-ით. გაამრავლეთ 225-ზე \frac{t^{2}}{2}.
\frac{15}{4}\times 5^{4}-45\times 5^{3}+\frac{225}{2}\times 5^{2}-\left(\frac{15}{4}\times 1^{4}-45\times 1^{3}+\frac{225}{2}\times 1^{2}\right)
განსაზღვრული ინტეგრალი წარმოადგენს გამოსახულების ანტიდერივატივს, შეფასებულს ინტეგრირების ზედა ზღვარზე, მინუს ანტიდერივატივი, შეფასებული ინტეგრირების ქვედა ზღვარზე.
-540
გაამარტივეთ.