მთავარ კონტენტზე გადასვლა
მამრავლი
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

a+b=-1 ab=-2=-2
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც -x^{2}+ax+bx+2. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
a=1 b=-2
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b უარყოფითია, უარყოფით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე დადებით რიცხვს. ერთადერთი ასეთი წყვილი არის სისტემის ამონახსნი.
\left(-x^{2}+x\right)+\left(-2x+2\right)
ხელახლა დაწერეთ -x^{2}-x+2, როგორც \left(-x^{2}+x\right)+\left(-2x+2\right).
x\left(-x+1\right)+2\left(-x+1\right)
x-ის პირველ, 2-ის კი მეორე ჯგუფში დაშლა მამრავლებად.
\left(-x+1\right)\left(x+2\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი -x+1 დისტრიბუციული თვისების გამოყენებით.
-x^{2}-x+2=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-1\right)\times 2}}{2\left(-1\right)}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-1\right)±\sqrt{1+4\times 2}}{2\left(-1\right)}
გაამრავლეთ -4-ზე -1.
x=\frac{-\left(-1\right)±\sqrt{1+8}}{2\left(-1\right)}
გაამრავლეთ 4-ზე 2.
x=\frac{-\left(-1\right)±\sqrt{9}}{2\left(-1\right)}
მიუმატეთ 1 8-ს.
x=\frac{-\left(-1\right)±3}{2\left(-1\right)}
აიღეთ 9-ის კვადრატული ფესვი.
x=\frac{1±3}{2\left(-1\right)}
-1-ის საპირისპიროა 1.
x=\frac{1±3}{-2}
გაამრავლეთ 2-ზე -1.
x=\frac{4}{-2}
ახლა ამოხსენით განტოლება x=\frac{1±3}{-2} როცა ± პლიუსია. მიუმატეთ 1 3-ს.
x=-2
გაყავით 4 -2-ზე.
x=-\frac{2}{-2}
ახლა ამოხსენით განტოლება x=\frac{1±3}{-2} როცა ± მინუსია. გამოაკელით 3 1-ს.
x=1
გაყავით -2 -2-ზე.
-x^{2}-x+2=-\left(x-\left(-2\right)\right)\left(x-1\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით -2 x_{1}-ისთვის და 1 x_{2}-ისთვის.
-x^{2}-x+2=-\left(x+2\right)\left(x-1\right)
გაამარტივეთ გამოსახულება p-\left(-q\right) p+q-მდე.