x を解く (複素数の解)
\left\{\begin{matrix}x=-i\ln(\frac{ie^{\frac{1}{y}}}{2}-\frac{i\sqrt{e^{\frac{2}{y}}-2e^{\frac{1}{y}}-3}}{2}-\frac{1}{2}i)+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }&y\neq 0\text{ and }\frac{-ie^{\frac{1}{y}}+i\sqrt{e^{\frac{2}{y}}-2e^{\frac{1}{y}}-3}}{2}\neq -\frac{1}{2}i\text{ and }Im(\ln(e^{\frac{1}{y}}))-Im(\frac{1}{y})=0\\x=-i\ln(\frac{ie^{\frac{1}{y}}}{2}+\frac{i\sqrt{e^{\frac{2}{y}}-2e^{\frac{1}{y}}-3}}{2}-\frac{1}{2}i)+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}\text{, }&y\neq 0\text{ and }\frac{-ie^{\frac{1}{y}}-i\sqrt{e^{\frac{2}{y}}-2e^{\frac{1}{y}}-3}}{2}\neq -\frac{1}{2}i\text{ and }Im(\ln(e^{\frac{1}{y}}))-Im(\frac{1}{y})=0\end{matrix}\right.
y を解く (複素数の解)
y=\frac{1}{\ln(2\sin(x)+1)}
\nexists n_{1}\in \mathrm{Z}\text{ : }\left(x=2\pi n_{1}+\frac{11\pi }{6}\text{ or }x=2\pi n_{1}+\frac{7\pi }{6}\right)\text{ and }\nexists n_{2}\in \mathrm{Z}\text{ : }x=\pi n_{2}
y を解く
y=\frac{1}{\ln(2\sin(x)+1)}
\nexists n_{2}\in \mathrm{Z}\text{ : }x=\pi n_{2}\text{ and }\exists n_{1}\in \mathrm{Z}\text{ : }\left(x>2\pi n_{1}+\frac{11\pi }{6}\text{ and }x<2\pi n_{1}+\frac{19\pi }{6}\right)
グラフ
共有
クリップボードにコピー済み
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}