メインコンテンツに移動します。
因数
Tick mark Image
計算
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

\left(x-4\right)\left(x^{2}+4x+3\right)
有理根定理では、多項式のすべての有理根が \frac{p}{q} の形式になり、p は定数項 -12 を除算し、q は主係数 1 を除算します。 そのような根の 1 つが 4 です。多項式を x-4 で除算して因数分解します。
a+b=4 ab=1\times 3=3
x^{2}+4x+3 を検討してください。 グループ化によって式を因数分解します。まず、式を x^{2}+ax+bx+3 として書き換える必要があります。 a と b を検索するには、解決するシステムをセットアップします。
a=1 b=3
ab は正の値なので、a と b の符号は同じです。 a+b は正の値なので、a と b はどちらも正の値です。 唯一の組み合わせが連立方程式の解です。
\left(x^{2}+x\right)+\left(3x+3\right)
x^{2}+4x+3 を \left(x^{2}+x\right)+\left(3x+3\right) に書き換えます。
x\left(x+1\right)+3\left(x+1\right)
1 番目のグループの x と 2 番目のグループの 3 をくくり出します。
\left(x+1\right)\left(x+3\right)
分配特性を使用して一般項 x+1 を除外します。
\left(x-4\right)\left(x+1\right)\left(x+3\right)
完全な因数分解された式を書き換えます。