x を解く (複素数の解)
\left\{\begin{matrix}x=-\frac{11-5x_{2}}{f^{2}}\text{, }&f\neq 0\\x\in \mathrm{C}\text{, }&x_{2}=\frac{11}{5}\text{ and }f=0\end{matrix}\right.
x を解く
\left\{\begin{matrix}x=-\frac{11-5x_{2}}{f^{2}}\text{, }&f\neq 0\\x\in \mathrm{R}\text{, }&x_{2}=\frac{11}{5}\text{ and }f=0\end{matrix}\right.
f を解く (複素数の解)
\left\{\begin{matrix}f=-ix^{-\frac{1}{2}}\sqrt{11-5x_{2}}\text{; }f=ix^{-\frac{1}{2}}\sqrt{11-5x_{2}}\text{, }&x\neq 0\\f\in \mathrm{C}\text{, }&x_{2}=\frac{11}{5}\text{ and }x=0\end{matrix}\right.
f を解く
\left\{\begin{matrix}f=\sqrt{\frac{5x_{2}-11}{x}}\text{; }f=-\sqrt{\frac{5x_{2}-11}{x}}\text{, }&\left(x_{2}\geq \frac{11}{5}\text{ and }x>0\right)\text{ or }\left(x_{2}\leq \frac{11}{5}\text{ and }x<0\right)\\f\in \mathrm{R}\text{, }&x_{2}=\frac{11}{5}\text{ and }x=0\end{matrix}\right.
グラフ
共有
クリップボードにコピー済み
f^{2}x=5x_{2}-11
f と f を乗算して f^{2} を求めます。
\frac{f^{2}x}{f^{2}}=\frac{5x_{2}-11}{f^{2}}
両辺を f^{2} で除算します。
x=\frac{5x_{2}-11}{f^{2}}
f^{2} で除算すると、f^{2} での乗算を元に戻します。
f^{2}x=5x_{2}-11
f と f を乗算して f^{2} を求めます。
\frac{f^{2}x}{f^{2}}=\frac{5x_{2}-11}{f^{2}}
両辺を f^{2} で除算します。
x=\frac{5x_{2}-11}{f^{2}}
f^{2} で除算すると、f^{2} での乗算を元に戻します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}