b を解く (複素数の解)
\left\{\begin{matrix}b=x-\frac{c}{a^{2}}\text{, }&a\neq 0\\b\in \mathrm{C}\text{, }&c=0\text{ and }a=0\end{matrix}\right.
b を解く
\left\{\begin{matrix}b=x-\frac{c}{a^{2}}\text{, }&a\neq 0\\b\in \mathrm{R}\text{, }&c=0\text{ and }a=0\end{matrix}\right.
a を解く (複素数の解)
\left\{\begin{matrix}a=-\left(x-b\right)^{-\frac{1}{2}}\sqrt{c}\text{; }a=\left(x-b\right)^{-\frac{1}{2}}\sqrt{c}\text{, }&x\neq b\\a\in \mathrm{C}\text{, }&c=0\text{ and }x=b\end{matrix}\right.
a を解く
\left\{\begin{matrix}a=\sqrt{\frac{c}{x-b}}\text{; }a=-\sqrt{\frac{c}{x-b}}\text{, }&\left(c\geq 0\text{ and }x>b\right)\text{ or }\left(c\leq 0\text{ and }x<b\right)\\a\in \mathrm{R}\text{, }&c=0\text{ and }x=b\end{matrix}\right.
グラフ
共有
クリップボードにコピー済み
a^{2}x-a^{2}b=c
分配則を使用して a^{2} と x-b を乗算します。
-a^{2}b=c-a^{2}x
両辺から a^{2}x を減算します。
-ba^{2}=-xa^{2}+c
項の順序を変更します。
\left(-a^{2}\right)b=c-xa^{2}
方程式は標準形です。
\frac{\left(-a^{2}\right)b}{-a^{2}}=\frac{c-xa^{2}}{-a^{2}}
両辺を -a^{2} で除算します。
b=\frac{c-xa^{2}}{-a^{2}}
-a^{2} で除算すると、-a^{2} での乗算を元に戻します。
b=x-\frac{c}{a^{2}}
c-xa^{2} を -a^{2} で除算します。
a^{2}x-a^{2}b=c
分配則を使用して a^{2} と x-b を乗算します。
-a^{2}b=c-a^{2}x
両辺から a^{2}x を減算します。
-ba^{2}=-xa^{2}+c
項の順序を変更します。
\left(-a^{2}\right)b=c-xa^{2}
方程式は標準形です。
\frac{\left(-a^{2}\right)b}{-a^{2}}=\frac{c-xa^{2}}{-a^{2}}
両辺を -a^{2} で除算します。
b=\frac{c-xa^{2}}{-a^{2}}
-a^{2} で除算すると、-a^{2} での乗算を元に戻します。
b=x-\frac{c}{a^{2}}
c-xa^{2} を -a^{2} で除算します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}