メインコンテンツに移動します。
x を解く (複素数の解)
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

3x^{2}+9x+9=0
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式では、2 つの解 (± が加算の場合と減算の場合) が得られます。
x=\frac{-9±\sqrt{9^{2}-4\times 3\times 9}}{2\times 3}
この方程式は標準形 ax^{2}+bx+c=0 です\frac{-b±\sqrt{b^{2}-4ac}}{2a} で a に 3 を代入し、b に 9 を代入し、c に 9 を代入します。
x=\frac{-9±\sqrt{81-4\times 3\times 9}}{2\times 3}
9 を 2 乗します。
x=\frac{-9±\sqrt{81-12\times 9}}{2\times 3}
-4 と 3 を乗算します。
x=\frac{-9±\sqrt{81-108}}{2\times 3}
-12 と 9 を乗算します。
x=\frac{-9±\sqrt{-27}}{2\times 3}
81 を -108 に加算します。
x=\frac{-9±3\sqrt{3}i}{2\times 3}
-27 の平方根をとります。
x=\frac{-9±3\sqrt{3}i}{6}
2 と 3 を乗算します。
x=\frac{-9+3\sqrt{3}i}{6}
± が正の時の方程式 x=\frac{-9±3\sqrt{3}i}{6} の解を求めます。 -9 を 3i\sqrt{3} に加算します。
x=\frac{-3+\sqrt{3}i}{2}
-9+3i\sqrt{3} を 6 で除算します。
x=\frac{-3\sqrt{3}i-9}{6}
± が負の時の方程式 x=\frac{-9±3\sqrt{3}i}{6} の解を求めます。 -9 から 3i\sqrt{3} を減算します。
x=\frac{-\sqrt{3}i-3}{2}
-9-3i\sqrt{3} を 6 で除算します。
x=\frac{-3+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-3}{2}
方程式が解けました。
3x^{2}+9x+9=0
このような二次方程式は、平方完成により解くことができます。平方完成するには、方程式は最初に x^{2}+bx=c の形式になっている必要があります。
3x^{2}+9x+9-9=-9
方程式の両辺から 9 を減算します。
3x^{2}+9x=-9
それ自体から 9 を減算すると 0 のままです。
\frac{3x^{2}+9x}{3}=-\frac{9}{3}
両辺を 3 で除算します。
x^{2}+\frac{9}{3}x=-\frac{9}{3}
3 で除算すると、3 での乗算を元に戻します。
x^{2}+3x=-\frac{9}{3}
9 を 3 で除算します。
x^{2}+3x=-3
-9 を 3 で除算します。
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-3+\left(\frac{3}{2}\right)^{2}
3 (x 項の係数) を 2 で除算して \frac{3}{2} を求めます。次に、方程式の両辺に \frac{3}{2} の平方を加算します。この手順により、方程式の左辺が完全平方になります。
x^{2}+3x+\frac{9}{4}=-3+\frac{9}{4}
\frac{3}{2} を 2 乗するには、分数の分子と分母の両方を 2 乗します。
x^{2}+3x+\frac{9}{4}=-\frac{3}{4}
-3 を \frac{9}{4} に加算します。
\left(x+\frac{3}{2}\right)^{2}=-\frac{3}{4}
因数x^{2}+3x+\frac{9}{4}。一般に、x^{2}+bx+cが完全な平方である場合、常に\left(x+\frac{b}{2}\right)^{2}として因数分解できます。
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{-\frac{3}{4}}
方程式の両辺の平方根をとります。
x+\frac{3}{2}=\frac{\sqrt{3}i}{2} x+\frac{3}{2}=-\frac{\sqrt{3}i}{2}
簡約化します。
x=\frac{-3+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-3}{2}
方程式の両辺から \frac{3}{2} を減算します。