メインコンテンツに移動します。
因数
Tick mark Image
計算
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

a+b=-3 ab=2\left(-5\right)=-10
グループ化によって式を因数分解します。まず、式を 2y^{2}+ay+by-5 として書き換える必要があります。 a と b を検索するには、解決するシステムをセットアップします。
1,-10 2,-5
ab は負の値なので、a と b の符号は逆になります。 a+b は負の値なので、負の数の方が正の数よりも絶対値が大きいです。 積が -10 になる整数の組み合わせをすべて一覧表示します。
1-10=-9 2-5=-3
各組み合わせの和を計算します。
a=-5 b=2
解は和が -3 になる組み合わせです。
\left(2y^{2}-5y\right)+\left(2y-5\right)
2y^{2}-3y-5 を \left(2y^{2}-5y\right)+\left(2y-5\right) に書き換えます。
y\left(2y-5\right)+2y-5
y の 2y^{2}-5y を除外します。
\left(2y-5\right)\left(y+1\right)
分配特性を使用して一般項 2y-5 を除外します。
2y^{2}-3y-5=0
二次多項式は変換 ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して因数分解できます。x_{1} と x_{2} は二次方程式 ax^{2}+bx+c=0 の解です。
y=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 2\left(-5\right)}}{2\times 2}
ax^{2}+bx+c=0 の形式のすべての方程式の解は、二次方程式の解の公式 \frac{-b±\sqrt{b^{2}-4ac}}{2a} を使用して求めることができます。二次方程式の解の公式では、2 つの解 (± が加算の場合と減算の場合) が得られます。
y=\frac{-\left(-3\right)±\sqrt{9-4\times 2\left(-5\right)}}{2\times 2}
-3 を 2 乗します。
y=\frac{-\left(-3\right)±\sqrt{9-8\left(-5\right)}}{2\times 2}
-4 と 2 を乗算します。
y=\frac{-\left(-3\right)±\sqrt{9+40}}{2\times 2}
-8 と -5 を乗算します。
y=\frac{-\left(-3\right)±\sqrt{49}}{2\times 2}
9 を 40 に加算します。
y=\frac{-\left(-3\right)±7}{2\times 2}
49 の平方根をとります。
y=\frac{3±7}{2\times 2}
-3 の反数は 3 です。
y=\frac{3±7}{4}
2 と 2 を乗算します。
y=\frac{10}{4}
± が正の時の方程式 y=\frac{3±7}{4} の解を求めます。 3 を 7 に加算します。
y=\frac{5}{2}
2 を開いて消去して、分数 \frac{10}{4} を約分します。
y=-\frac{4}{4}
± が負の時の方程式 y=\frac{3±7}{4} の解を求めます。 3 から 7 を減算します。
y=-1
-4 を 4 で除算します。
2y^{2}-3y-5=2\left(y-\frac{5}{2}\right)\left(y-\left(-1\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) を使用して元の式を因数分解します。x_{1} に \frac{5}{2} を x_{2} に -1 を代入します。
2y^{2}-3y-5=2\left(y-\frac{5}{2}\right)\left(y+1\right)
すべての p-\left(-q\right) の形式の式を p+q の形式に簡単にします。
2y^{2}-3y-5=2\times \frac{2y-5}{2}\left(y+1\right)
y から \frac{5}{2} を減算するには、公分母を求めて分子を減算します。次に、可能であれば分数を約分します。
2y^{2}-3y-5=\left(2y-5\right)\left(y+1\right)
2 と 2 の最大公約数 2 で約分します。