x を解く (複素数の解)
\left\{\begin{matrix}x=\frac{y^{2}-1}{2\left(\lambda -1\right)}\text{, }&\lambda \neq 1\\x\in \mathrm{C}\text{, }&\left(y=-1\text{ or }y=1\right)\text{ and }\lambda =1\end{matrix}\right.
x を解く
\left\{\begin{matrix}x=\frac{y^{2}-1}{2\left(\lambda -1\right)}\text{, }&\lambda \neq 1\\x\in \mathrm{R}\text{, }&\lambda =1\text{ and }|y|=1\end{matrix}\right.
y を解く (複素数の解)
y=-\sqrt{2x\lambda -2x+1}
y=\sqrt{2x\lambda -2x+1}
y を解く
y=\sqrt{2x\lambda -2x+1}
y=-\sqrt{2x\lambda -2x+1}\text{, }\left(\lambda \leq 1\text{ or }x\geq -\frac{1}{2\lambda -2}\right)\text{ and }\left(\lambda \geq 1\text{ or }x\leq -\frac{1}{2\lambda -2}\right)
グラフ
共有
クリップボードにコピー済み
2x\lambda -2x=y^{2}-1
両辺から 2x を減算します。
\left(2\lambda -2\right)x=y^{2}-1
x を含むすべての項をまとめます。
\frac{\left(2\lambda -2\right)x}{2\lambda -2}=\frac{y^{2}-1}{2\lambda -2}
両辺を 2\lambda -2 で除算します。
x=\frac{y^{2}-1}{2\lambda -2}
2\lambda -2 で除算すると、2\lambda -2 での乗算を元に戻します。
x=\frac{y^{2}-1}{2\left(\lambda -1\right)}
-1+y^{2} を 2\lambda -2 で除算します。
2x\lambda -2x=y^{2}-1
両辺から 2x を減算します。
\left(2\lambda -2\right)x=y^{2}-1
x を含むすべての項をまとめます。
\frac{\left(2\lambda -2\right)x}{2\lambda -2}=\frac{y^{2}-1}{2\lambda -2}
両辺を 2\lambda -2 で除算します。
x=\frac{y^{2}-1}{2\lambda -2}
2\lambda -2 で除算すると、2\lambda -2 での乗算を元に戻します。
x=\frac{y^{2}-1}{2\left(\lambda -1\right)}
-1+y^{2} を 2\lambda -2 で除算します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}