メインコンテンツに移動します。
計算
Tick mark Image
展開
Tick mark Image

Web 検索からの類似の問題

共有

x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
二項定理の \left(a-b\right)^{2}=a^{2}-2ab+b^{2} を使用して \left(x-\frac{1}{5}y\right)^{2} を展開します。
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}\right)+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
二項定理の \left(a+b\right)^{2}=a^{2}+2ab+b^{2} を使用して \left(\frac{8}{15}y+\frac{11}{2}x\right)^{2} を展開します。
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\frac{64}{225}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
\frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2} の反数を求めるには、各項の半数を求めます。
x^{2}-\frac{2}{5}xy-\frac{11}{45}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
\frac{1}{25}y^{2} と -\frac{64}{225}y^{2} をまとめて -\frac{11}{45}y^{2} を求めます。
x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
-\frac{2}{5}xy と -\frac{88}{15}yx をまとめて -\frac{94}{15}xy を求めます。
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
x^{2} と -\frac{121}{4}x^{2} をまとめて -\frac{117}{4}x^{2} を求めます。
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\frac{81}{4}x^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
二項定理の \left(a+b\right)^{2}=a^{2}+2ab+b^{2} を使用して \left(\frac{9}{2}x+\frac{2}{3}y\right)^{2} を展開します。
-9x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
-\frac{117}{4}x^{2} と \frac{81}{4}x^{2} をまとめて -9x^{2} を求めます。
-9x^{2}-\frac{4}{15}xy-\frac{11}{45}y^{2}+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
-\frac{94}{15}xy と 6xy をまとめて -\frac{4}{15}xy を求めます。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
-\frac{11}{45}y^{2} と \frac{4}{9}y^{2} をまとめて \frac{1}{5}y^{2} を求めます。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y\right)^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right) を検討してください。 乗算は、ルール \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} を使用して残差平方和に変換することができます。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}\right)^{2}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
\left(\frac{1}{5}y\right)^{2} を展開します。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
\frac{1}{5} の 2 乗を計算して \frac{1}{25} を求めます。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-3^{2}x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
\left(3x\right)^{2} を展開します。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
3 の 2 乗を計算して 9 を求めます。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}\right)^{2}y^{2}\right)
\left(-\frac{2}{5}y\right)^{2} を展開します。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\frac{4}{25}y^{2}\right)
-\frac{2}{5} の 2 乗を計算して \frac{4}{25} を求めます。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{5}y^{2}-9x^{2}\right)
\frac{1}{25}y^{2} と \frac{4}{25}y^{2} をまとめて \frac{1}{5}y^{2} を求めます。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\frac{1}{5}y^{2}+9x^{2}
\frac{1}{5}y^{2}-9x^{2} の反数を求めるには、各項の半数を求めます。
-9x^{2}-\frac{4}{15}xy+9x^{2}
\frac{1}{5}y^{2} と -\frac{1}{5}y^{2} をまとめて 0 を求めます。
-\frac{4}{15}xy
-9x^{2} と 9x^{2} をまとめて 0 を求めます。
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{8}{15}y+\frac{11}{2}x\right)^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
二項定理の \left(a-b\right)^{2}=a^{2}-2ab+b^{2} を使用して \left(x-\frac{1}{5}y\right)^{2} を展開します。
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\left(\frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2}\right)+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
二項定理の \left(a+b\right)^{2}=a^{2}+2ab+b^{2} を使用して \left(\frac{8}{15}y+\frac{11}{2}x\right)^{2} を展開します。
x^{2}-\frac{2}{5}xy+\frac{1}{25}y^{2}-\frac{64}{225}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
\frac{64}{225}y^{2}+\frac{88}{15}yx+\frac{121}{4}x^{2} の反数を求めるには、各項の半数を求めます。
x^{2}-\frac{2}{5}xy-\frac{11}{45}y^{2}-\frac{88}{15}yx-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
\frac{1}{25}y^{2} と -\frac{64}{225}y^{2} をまとめて -\frac{11}{45}y^{2} を求めます。
x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}-\frac{121}{4}x^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
-\frac{2}{5}xy と -\frac{88}{15}yx をまとめて -\frac{94}{15}xy を求めます。
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\left(\frac{9}{2}x+\frac{2}{3}y\right)^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
x^{2} と -\frac{121}{4}x^{2} をまとめて -\frac{117}{4}x^{2} を求めます。
-\frac{117}{4}x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+\frac{81}{4}x^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
二項定理の \left(a+b\right)^{2}=a^{2}+2ab+b^{2} を使用して \left(\frac{9}{2}x+\frac{2}{3}y\right)^{2} を展開します。
-9x^{2}-\frac{94}{15}xy-\frac{11}{45}y^{2}+6xy+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
-\frac{117}{4}x^{2} と \frac{81}{4}x^{2} をまとめて -9x^{2} を求めます。
-9x^{2}-\frac{4}{15}xy-\frac{11}{45}y^{2}+\frac{4}{9}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
-\frac{94}{15}xy と 6xy をまとめて -\frac{4}{15}xy を求めます。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right)+\left(-\frac{2}{5}y\right)^{2}\right)
-\frac{11}{45}y^{2} と \frac{4}{9}y^{2} をまとめて \frac{1}{5}y^{2} を求めます。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}y\right)^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
\left(\frac{1}{5}y-3x\right)\left(3x+\frac{1}{5}y\right) を検討してください。 乗算は、ルール \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} を使用して残差平方和に変換することができます。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\left(\frac{1}{5}\right)^{2}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
\left(\frac{1}{5}y\right)^{2} を展開します。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-\left(3x\right)^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
\frac{1}{5} の 2 乗を計算して \frac{1}{25} を求めます。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-3^{2}x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
\left(3x\right)^{2} を展開します。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}y\right)^{2}\right)
3 の 2 乗を計算して 9 を求めます。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\left(-\frac{2}{5}\right)^{2}y^{2}\right)
\left(-\frac{2}{5}y\right)^{2} を展開します。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{25}y^{2}-9x^{2}+\frac{4}{25}y^{2}\right)
-\frac{2}{5} の 2 乗を計算して \frac{4}{25} を求めます。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\left(\frac{1}{5}y^{2}-9x^{2}\right)
\frac{1}{25}y^{2} と \frac{4}{25}y^{2} をまとめて \frac{1}{5}y^{2} を求めます。
-9x^{2}-\frac{4}{15}xy+\frac{1}{5}y^{2}-\frac{1}{5}y^{2}+9x^{2}
\frac{1}{5}y^{2}-9x^{2} の反数を求めるには、各項の半数を求めます。
-9x^{2}-\frac{4}{15}xy+9x^{2}
\frac{1}{5}y^{2} と -\frac{1}{5}y^{2} をまとめて 0 を求めます。
-\frac{4}{15}xy
-9x^{2} と 9x^{2} をまとめて 0 を求めます。