メインコンテンツに移動します。
x を解く
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

x^{3}+3x^{2}+3x+1-\left(x-1\right)^{3}=x^{2}+3
二項定理の \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} を使用して \left(x+1\right)^{3} を展開します。
x^{3}+3x^{2}+3x+1-\left(x^{3}-3x^{2}+3x-1\right)=x^{2}+3
二項定理の \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} を使用して \left(x-1\right)^{3} を展開します。
x^{3}+3x^{2}+3x+1-x^{3}+3x^{2}-3x+1=x^{2}+3
x^{3}-3x^{2}+3x-1 の反数を求めるには、各項の半数を求めます。
3x^{2}+3x+1+3x^{2}-3x+1=x^{2}+3
x^{3} と -x^{3} をまとめて 0 を求めます。
6x^{2}+3x+1-3x+1=x^{2}+3
3x^{2} と 3x^{2} をまとめて 6x^{2} を求めます。
6x^{2}+1+1=x^{2}+3
3x と -3x をまとめて 0 を求めます。
6x^{2}+2=x^{2}+3
1 と 1 を加算して 2 を求めます。
6x^{2}+2-x^{2}=3
両辺から x^{2} を減算します。
5x^{2}+2=3
6x^{2} と -x^{2} をまとめて 5x^{2} を求めます。
5x^{2}=3-2
両辺から 2 を減算します。
5x^{2}=1
3 から 2 を減算して 1 を求めます。
x^{2}=\frac{1}{5}
両辺を 5 で除算します。
x=\frac{\sqrt{5}}{5} x=-\frac{\sqrt{5}}{5}
方程式の両辺の平方根をとります。
x^{3}+3x^{2}+3x+1-\left(x-1\right)^{3}=x^{2}+3
二項定理の \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} を使用して \left(x+1\right)^{3} を展開します。
x^{3}+3x^{2}+3x+1-\left(x^{3}-3x^{2}+3x-1\right)=x^{2}+3
二項定理の \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} を使用して \left(x-1\right)^{3} を展開します。
x^{3}+3x^{2}+3x+1-x^{3}+3x^{2}-3x+1=x^{2}+3
x^{3}-3x^{2}+3x-1 の反数を求めるには、各項の半数を求めます。
3x^{2}+3x+1+3x^{2}-3x+1=x^{2}+3
x^{3} と -x^{3} をまとめて 0 を求めます。
6x^{2}+3x+1-3x+1=x^{2}+3
3x^{2} と 3x^{2} をまとめて 6x^{2} を求めます。
6x^{2}+1+1=x^{2}+3
3x と -3x をまとめて 0 を求めます。
6x^{2}+2=x^{2}+3
1 と 1 を加算して 2 を求めます。
6x^{2}+2-x^{2}=3
両辺から x^{2} を減算します。
5x^{2}+2=3
6x^{2} と -x^{2} をまとめて 5x^{2} を求めます。
5x^{2}+2-3=0
両辺から 3 を減算します。
5x^{2}-1=0
2 から 3 を減算して -1 を求めます。
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-1\right)}}{2\times 5}
この方程式は標準形 ax^{2}+bx+c=0 です\frac{-b±\sqrt{b^{2}-4ac}}{2a} で a に 5 を代入し、b に 0 を代入し、c に -1 を代入します。
x=\frac{0±\sqrt{-4\times 5\left(-1\right)}}{2\times 5}
0 を 2 乗します。
x=\frac{0±\sqrt{-20\left(-1\right)}}{2\times 5}
-4 と 5 を乗算します。
x=\frac{0±\sqrt{20}}{2\times 5}
-20 と -1 を乗算します。
x=\frac{0±2\sqrt{5}}{2\times 5}
20 の平方根をとります。
x=\frac{0±2\sqrt{5}}{10}
2 と 5 を乗算します。
x=\frac{\sqrt{5}}{5}
± が正の時の方程式 x=\frac{0±2\sqrt{5}}{10} の解を求めます。
x=-\frac{\sqrt{5}}{5}
± が負の時の方程式 x=\frac{0±2\sqrt{5}}{10} の解を求めます。
x=\frac{\sqrt{5}}{5} x=-\frac{\sqrt{5}}{5}
方程式が解けました。