α を解く (複素数の解)
\alpha =\frac{2\left(\ln(\sigma _{x})+\ln(\frac{3}{2})\right)}{\ln(2)+\pi i}+\frac{2\pi n_{1}i}{\ln(2)+\pi i}
n_{1}\in \mathrm{Z}
\sigma _{x}\neq 0
σ_x を解く (複素数の解)
\sigma _{x}=-\frac{2\left(-2\right)^{\frac{\alpha }{2}}}{3}
\sigma _{x}=\frac{2\left(-2\right)^{\frac{\alpha }{2}}}{3}
α を解く
\alpha =\frac{\ln(\sigma _{x}^{2})+\ln(\frac{9}{4})}{\ln(2)}
\sigma _{x}\neq 0\text{ and }Numerator(\frac{\ln(\sigma _{x}^{2})+2\ln(3)}{\ln(2)}-2)\text{bmod}2=0\text{ and }Denominator(\frac{\ln(\sigma _{x}^{2})+2\ln(3)}{\ln(2)})\text{bmod}2=1
σ_x を解く
\sigma _{x}=\frac{2\sqrt{\left(-2\right)^{\alpha }}}{3}
\sigma _{x}=-\frac{2\sqrt{\left(-2\right)^{\alpha }}}{3}\text{, }Denominator(\alpha )\text{bmod}2=1\text{ and }\left(-2\right)^{\alpha }\geq 0
共有
クリップボードにコピー済み
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}