メインコンテンツに移動します。
x,y を解く
Tick mark Image
x,y を解く (複素数の解)
Tick mark Image
グラフ

Web 検索からの類似の問題

共有

y=mx-2m+\sqrt{2}
2 番目の方程式を考えなさい。 分配則を使用して m と x-2 を乗算します。
x^{2}+2\left(mx-2m+\sqrt{2}\right)^{2}=8
他の方程式、x^{2}+2y^{2}=8 の y に mx-2m+\sqrt{2} を代入します。
x^{2}+2\left(m^{2}x^{2}+2m\left(-2m+\sqrt{2}\right)x+\left(-2m+\sqrt{2}\right)^{2}\right)=8
mx-2m+\sqrt{2} を 2 乗します。
x^{2}+2m^{2}x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}=8
2 と m^{2}x^{2}+2m\left(-2m+\sqrt{2}\right)x+\left(-2m+\sqrt{2}\right)^{2} を乗算します。
\left(2m^{2}+1\right)x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}=8
x^{2} を 2m^{2}x^{2} に加算します。
\left(2m^{2}+1\right)x^{2}+4m\left(-2m+\sqrt{2}\right)x+2\left(-2m+\sqrt{2}\right)^{2}-8=0
方程式の両辺から 8 を減算します。
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{\left(4m\left(-2m+\sqrt{2}\right)\right)^{2}-4\left(2m^{2}+1\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
この方程式は標準形 ax^{2}+bx+c=0 です\frac{-b±\sqrt{b^{2}-4ac}}{2a} で a に 1+2m^{2} を代入し、b に 2\times 2m\left(-2m+\sqrt{2}\right) を代入し、c に -4+8m^{2}-8m\sqrt{2} を代入します。
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}-4\left(2m^{2}+1\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
2\times 2m\left(-2m+\sqrt{2}\right) を 2 乗します。
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}+\left(-8m^{2}-4\right)\left(8m^{2}-8\sqrt{2}m-4\right)}}{2\left(2m^{2}+1\right)}
-4 と 1+2m^{2} を乗算します。
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{16m^{2}\left(-2m+\sqrt{2}\right)^{2}-64m^{4}+64\sqrt{2}m^{3}+32\sqrt{2}m+16}}{2\left(2m^{2}+1\right)}
-4-8m^{2} と -4+8m^{2}-8m\sqrt{2} を乗算します。
x=\frac{-4m\left(-2m+\sqrt{2}\right)±\sqrt{32m^{2}+32\sqrt{2}m+16}}{2\left(2m^{2}+1\right)}
16m^{2}\left(-2m+\sqrt{2}\right)^{2} を 16+32m\sqrt{2}-64m^{4}+64m^{3}\sqrt{2} に加算します。
x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{2\left(2m^{2}+1\right)}
16+32m^{2}+32m\sqrt{2} の平方根をとります。
x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}
2 と 1+2m^{2} を乗算します。
x=\frac{-4m\left(-2m+\sqrt{2}\right)+4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2}
± が正の時の方程式 x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2} の解を求めます。 -4m\left(-2m+\sqrt{2}\right) を 4\sqrt{1+2m^{2}+2m\sqrt{2}} に加算します。
x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
-4m\left(-2m+\sqrt{2}\right)+4\sqrt{1+2m^{2}+2m\sqrt{2}} を 2+4m^{2} で除算します。
x=\frac{8m^{2}-4\sqrt{2m^{2}+2\sqrt{2}m+1}-4\sqrt{2}m}{4m^{2}+2}
± が負の時の方程式 x=\frac{-4m\left(-2m+\sqrt{2}\right)±4\sqrt{2m^{2}+2\sqrt{2}m+1}}{4m^{2}+2} の解を求めます。 -4m\left(-2m+\sqrt{2}\right) から 4\sqrt{1+2m^{2}+2m\sqrt{2}} を減算します。
x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
8m^{2}-4m\sqrt{2}-4\sqrt{1+2m^{2}+2m\sqrt{2}} を 2+4m^{2} で除算します。
y=m\times \frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}-2m+\sqrt{2}
x には 2 つの解、\frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} と \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} があります。\frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} を方程式 y=mx-2m+\sqrt{2} の x に代入して、両方の方程式を満たす y に対応する解を求めます。
y=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2}
m と \frac{2\left(2m^{2}-m\sqrt{2}+\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} を乗算します。
y=m\times \frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}-2m+\sqrt{2}
方程式 y=mx-2m+\sqrt{2} の x に \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} を代入して、両方の方程式を満たす y の対応する解を求めます。
y=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2}
m と \frac{2\left(2m^{2}-m\sqrt{2}-\sqrt{2m^{2}+1+2m\sqrt{2}}\right)}{1+2m^{2}} を乗算します。
y=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2},x=\frac{2\left(2m^{2}+\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}\text{ or }y=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}m-2m+\sqrt{2},x=\frac{2\left(2m^{2}-\sqrt{2m^{2}+2\sqrt{2}m+1}-\sqrt{2}m\right)}{2m^{2}+1}
連立方程式は解決しました。