x,y,z を解く (複素数の解)
x=\frac{x_{1}x_{2}+y_{1}y_{2}}{x_{2}^{2}+y_{2}^{2}}
y=x_{2}^{2}+y_{2}^{2}
z=x_{2}^{2}+y_{2}^{2}
\left(x_{2}=-\sqrt{b-y_{2}^{2}}\text{ and }arg(iy_{2})\geq \pi \text{ and }y_{2}\neq 0\text{ and }arg(-iy_{2})\geq \pi \text{ and }a=b\right)\text{ or }\left(x_{2}=-\sqrt{b-y_{2}^{2}}\text{ and }b\neq 0\text{ and }a=b\right)\text{ or }\left(x_{2}=\sqrt{b-y_{2}^{2}}\text{ and }arg(iy_{2})\geq \pi \text{ and }y_{2}\neq 0\text{ and }arg(-iy_{2})\geq \pi \text{ and }a=b\right)\text{ or }\left(x_{2}=\sqrt{b-y_{2}^{2}}\text{ and }b\neq 0\text{ and }a=b\right)
x,y,z を解く
x=\frac{x_{1}x_{2}+y_{1}y_{2}}{x_{2}^{2}+y_{2}^{2}}
y=x_{2}^{2}+y_{2}^{2}
z=x_{2}^{2}+y_{2}^{2}
a=b\text{ and }\left(y_{2}\neq 0\text{ or }x_{2}\neq 0\right)\text{ and }\left(b>y_{2}^{2}\text{ or }y_{2}\neq 0\right)\text{ and }b\geq y_{2}^{2}\text{ and }|x_{2}|=\sqrt{b-y_{2}^{2}}
共有
クリップボードにコピー済み
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}