メインコンテンツに移動します。
計算
Tick mark Image
x で微分する
Tick mark Image

Web 検索からの類似の問題

共有

\int 2x^{4}-6x^{3}+5x^{2}-15x\mathrm{d}x
分配則を使用して 2x^{2}+5 と x^{2}-3x を乗算します。
\int 2x^{4}\mathrm{d}x+\int -6x^{3}\mathrm{d}x+\int 5x^{2}\mathrm{d}x+\int -15x\mathrm{d}x
項別に合計を積分します。
2\int x^{4}\mathrm{d}x-6\int x^{3}\mathrm{d}x+5\int x^{2}\mathrm{d}x-15\int x\mathrm{d}x
各項の定数を因数分解します。
\frac{2x^{5}}{5}-6\int x^{3}\mathrm{d}x+5\int x^{2}\mathrm{d}x-15\int x\mathrm{d}x
k\neq -1 は \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} なので、\int x^{4}\mathrm{d}x を \frac{x^{5}}{5} に置き換えます。 2 と \frac{x^{5}}{5} を乗算します。
\frac{2x^{5}}{5}-\frac{3x^{4}}{2}+5\int x^{2}\mathrm{d}x-15\int x\mathrm{d}x
k\neq -1 は \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} なので、\int x^{3}\mathrm{d}x を \frac{x^{4}}{4} に置き換えます。 -6 と \frac{x^{4}}{4} を乗算します。
\frac{2x^{5}}{5}-\frac{3x^{4}}{2}+\frac{5x^{3}}{3}-15\int x\mathrm{d}x
k\neq -1 は \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} なので、\int x^{2}\mathrm{d}x を \frac{x^{3}}{3} に置き換えます。 5 と \frac{x^{3}}{3} を乗算します。
\frac{2x^{5}}{5}-\frac{3x^{4}}{2}+\frac{5x^{3}}{3}-\frac{15x^{2}}{2}
k\neq -1 は \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} なので、\int x\mathrm{d}x を \frac{x^{2}}{2} に置き換えます。 -15 と \frac{x^{2}}{2} を乗算します。
\frac{2x^{5}}{5}-\frac{3x^{4}}{2}+\frac{5x^{3}}{3}-\frac{15x^{2}}{2}+С
F\left(x\right) が f\left(x\right) の不定積分である場合、f\left(x\right) のすべての不定積分のセットは F\left(x\right)+C によって与えられます。したがって、積分定数 C\in \mathrm{R} を結果に追加します。