x を解く
x=\frac{9\sqrt{2}+1}{23}\approx 0.596866177
グラフ
共有
クリップボードにコピー済み
2^{\frac{1}{2}}\left(5x-2\sqrt{2}\right)-\left(x-3\right)-\frac{1}{3}\times 2^{\frac{1}{2}}\left(11x-1\right)=0
方程式の両辺に 2 を乗算します。
2^{\frac{1}{2}}\times 5x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-\left(x-3\right)-\frac{1}{3}\times 2^{\frac{1}{2}}\left(11x-1\right)=0
分配則を使用して 2^{\frac{1}{2}} と 5x-2\sqrt{2} を乗算します。
2^{\frac{1}{2}}\times 5x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-x-\left(-3\right)-\frac{1}{3}\times 2^{\frac{1}{2}}\left(11x-1\right)=0
x-3 の反数を求めるには、各項の半数を求めます。
2^{\frac{1}{2}}\times 5x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-x+3-\frac{1}{3}\times 2^{\frac{1}{2}}\left(11x-1\right)=0
-3 の反数は 3 です。
2^{\frac{1}{2}}\times 5x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-x+3-\left(\frac{1}{3}\times 2^{\frac{1}{2}}\times 11x+\frac{1}{3}\times 2^{\frac{1}{2}}\left(-1\right)\right)=0
分配則を使用して \frac{1}{3}\times 2^{\frac{1}{2}} と 11x-1 を乗算します。
2^{\frac{1}{2}}\times 5x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-x+3-\left(\frac{11}{3}\times 2^{\frac{1}{2}}x+\frac{1}{3}\times 2^{\frac{1}{2}}\left(-1\right)\right)=0
\frac{1}{3} と 11 を乗算して \frac{11}{3} を求めます。
2^{\frac{1}{2}}\times 5x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-x+3-\left(\frac{11}{3}\times 2^{\frac{1}{2}}x-\frac{1}{3}\times 2^{\frac{1}{2}}\right)=0
\frac{1}{3} と -1 を乗算して -\frac{1}{3} を求めます。
2^{\frac{1}{2}}\times 5x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-x+3-\frac{11}{3}\times 2^{\frac{1}{2}}x-\left(-\frac{1}{3}\times 2^{\frac{1}{2}}\right)=0
\frac{11}{3}\times 2^{\frac{1}{2}}x-\frac{1}{3}\times 2^{\frac{1}{2}} の反数を求めるには、各項の半数を求めます。
2^{\frac{1}{2}}\times 5x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-x+3-\frac{11}{3}\times 2^{\frac{1}{2}}x+\frac{1}{3}\times 2^{\frac{1}{2}}=0
-\frac{1}{3}\times 2^{\frac{1}{2}} の反数は \frac{1}{3}\times 2^{\frac{1}{2}} です。
\frac{4}{3}\times 2^{\frac{1}{2}}x+2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-x+3+\frac{1}{3}\times 2^{\frac{1}{2}}=0
2^{\frac{1}{2}}\times 5x と -\frac{11}{3}\times 2^{\frac{1}{2}}x をまとめて \frac{4}{3}\times 2^{\frac{1}{2}}x を求めます。
\frac{4}{3}\times 2^{\frac{1}{2}}x-x+3+\frac{1}{3}\times 2^{\frac{1}{2}}=-2^{\frac{1}{2}}\left(-2\right)\sqrt{2}
両辺から 2^{\frac{1}{2}}\left(-2\right)\sqrt{2} を減算します。 ゼロから何かを引くとその負の数になります。
\frac{4}{3}\times 2^{\frac{1}{2}}x-x+\frac{1}{3}\times 2^{\frac{1}{2}}=-2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-3
両辺から 3 を減算します。
\frac{4}{3}\times 2^{\frac{1}{2}}x-x=-2^{\frac{1}{2}}\left(-2\right)\sqrt{2}-3-\frac{1}{3}\times 2^{\frac{1}{2}}
両辺から \frac{1}{3}\times 2^{\frac{1}{2}} を減算します。
\frac{4}{3}\sqrt{2}x-x=-\left(-2\sqrt{2}\sqrt{2}\right)-3-\frac{1}{3}\sqrt{2}
項の順序を変更します。
\frac{4}{3}\sqrt{2}x-x=-\left(-2\right)\times 2-3-\frac{1}{3}\sqrt{2}
\sqrt{2} と \sqrt{2} を乗算して 2 を求めます。
\frac{4}{3}\sqrt{2}x-x=2\times 2-3-\frac{1}{3}\sqrt{2}
-1 と -2 を乗算して 2 を求めます。
\frac{4}{3}\sqrt{2}x-x=4-3-\frac{1}{3}\sqrt{2}
2 と 2 を乗算して 4 を求めます。
\frac{4}{3}\sqrt{2}x-x=1-\frac{1}{3}\sqrt{2}
4 から 3 を減算して 1 を求めます。
\left(\frac{4}{3}\sqrt{2}-1\right)x=1-\frac{1}{3}\sqrt{2}
x を含むすべての項をまとめます。
\left(\frac{4\sqrt{2}}{3}-1\right)x=-\frac{\sqrt{2}}{3}+1
方程式は標準形です。
\frac{\left(\frac{4\sqrt{2}}{3}-1\right)x}{\frac{4\sqrt{2}}{3}-1}=\frac{-\frac{\sqrt{2}}{3}+1}{\frac{4\sqrt{2}}{3}-1}
両辺を \frac{4}{3}\sqrt{2}-1 で除算します。
x=\frac{-\frac{\sqrt{2}}{3}+1}{\frac{4\sqrt{2}}{3}-1}
\frac{4}{3}\sqrt{2}-1 で除算すると、\frac{4}{3}\sqrt{2}-1 での乗算を元に戻します。
x=\frac{9\sqrt{2}+1}{23}
1-\frac{\sqrt{2}}{3} を \frac{4}{3}\sqrt{2}-1 で除算します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}