計算
\frac{\sqrt{5}}{3}\approx 0.745355992
共有
クリップボードにコピー済み
\frac{\frac{\sqrt{5}}{2\sqrt{2}+\sqrt{5}}}{\sqrt{8}-\sqrt{5}}
8=2^{2}\times 2 を因数分解します。 積の平方根を \sqrt{2^{2}}\sqrt{2} 平方根の積として書き直します。 \sqrt{2^{2}\times 2} 2^{2} の平方根をとります。
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\left(2\sqrt{2}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}\right)}}{\sqrt{8}-\sqrt{5}}
分子と分母に 2\sqrt{2}-\sqrt{5} を乗算して、\frac{\sqrt{5}}{2\sqrt{2}+\sqrt{5}} の分母を有理化します。
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\left(2\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
\left(2\sqrt{2}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}\right) を検討してください。 乗算は、ルール \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} を使用して残差平方和に変換することができます。
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{2^{2}\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
\left(2\sqrt{2}\right)^{2} を展開します。
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{4\left(\sqrt{2}\right)^{2}-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
2 の 2 乗を計算して 4 を求めます。
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{4\times 2-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
\sqrt{2} の平方は 2 です。
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{8-\left(\sqrt{5}\right)^{2}}}{\sqrt{8}-\sqrt{5}}
4 と 2 を乗算して 8 を求めます。
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{8-5}}{\sqrt{8}-\sqrt{5}}
\sqrt{5} の平方は 5 です。
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{\sqrt{8}-\sqrt{5}}
8 から 5 を減算して 3 を求めます。
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{2\sqrt{2}-\sqrt{5}}
8=2^{2}\times 2 を因数分解します。 積の平方根を \sqrt{2^{2}}\sqrt{2} 平方根の積として書き直します。 \sqrt{2^{2}\times 2} 2^{2} の平方根をとります。
\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3\left(2\sqrt{2}-\sqrt{5}\right)}
\frac{\frac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{3}}{2\sqrt{2}-\sqrt{5}} を 1 つの分数で表現します。
\frac{\sqrt{5}}{3}
分子と分母の両方の -\sqrt{5}+2\sqrt{2} を約分します。
例
二次方程式の公式
{ x } ^ { 2 } - 4 x - 5 = 0
三角法
4 \sin \theta \cos \theta = 2 \sin \theta
一次方程式
y = 3x + 4
算術
699 * 533
マトリックス
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
連立方程式
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
微分法
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
積分法
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
限界
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}