Salta al contenuto principale
Trova x
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

5x^{2}+2x=4
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
5x^{2}+2x-4=4-4
Sottrai 4 da entrambi i lati dell'equazione.
5x^{2}+2x-4=0
Sottraendo 4 da se stesso rimane 0.
x=\frac{-2±\sqrt{2^{2}-4\times 5\left(-4\right)}}{2\times 5}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci 5 a a, 2 a b e -4 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 5\left(-4\right)}}{2\times 5}
Eleva 2 al quadrato.
x=\frac{-2±\sqrt{4-20\left(-4\right)}}{2\times 5}
Moltiplica -4 per 5.
x=\frac{-2±\sqrt{4+80}}{2\times 5}
Moltiplica -20 per -4.
x=\frac{-2±\sqrt{84}}{2\times 5}
Aggiungi 4 a 80.
x=\frac{-2±2\sqrt{21}}{2\times 5}
Calcola la radice quadrata di 84.
x=\frac{-2±2\sqrt{21}}{10}
Moltiplica 2 per 5.
x=\frac{2\sqrt{21}-2}{10}
Ora risolvi l'equazione x=\frac{-2±2\sqrt{21}}{10} quando ± è più. Aggiungi -2 a 2\sqrt{21}.
x=\frac{\sqrt{21}-1}{5}
Dividi -2+2\sqrt{21} per 10.
x=\frac{-2\sqrt{21}-2}{10}
Ora risolvi l'equazione x=\frac{-2±2\sqrt{21}}{10} quando ± è meno. Sottrai 2\sqrt{21} da -2.
x=\frac{-\sqrt{21}-1}{5}
Dividi -2-2\sqrt{21} per 10.
x=\frac{\sqrt{21}-1}{5} x=\frac{-\sqrt{21}-1}{5}
L'equazione è stata risolta.
5x^{2}+2x=4
Le equazioni di secondo grado come questa possono essere risolte completando il quadrato. Per completare il quadrato, l'equazione deve essere prima convertita nel formato x^{2}+bx=c.
\frac{5x^{2}+2x}{5}=\frac{4}{5}
Dividi entrambi i lati per 5.
x^{2}+\frac{2}{5}x=\frac{4}{5}
La divisione per 5 annulla la moltiplicazione per 5.
x^{2}+\frac{2}{5}x+\left(\frac{1}{5}\right)^{2}=\frac{4}{5}+\left(\frac{1}{5}\right)^{2}
Dividi \frac{2}{5}, il coefficiente del termine x, per 2 per ottenere \frac{1}{5}. Quindi aggiungi il quadrato di \frac{1}{5} a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{4}{5}+\frac{1}{25}
Eleva \frac{1}{5} al quadrato elevando al quadrato sia il numeratore che il denominatore della frazione.
x^{2}+\frac{2}{5}x+\frac{1}{25}=\frac{21}{25}
Aggiungi \frac{4}{5} a \frac{1}{25} trovando un denominatore comune e sommando i numeratori, quindi riduci la frazione ai minimi termini, se possibile.
\left(x+\frac{1}{5}\right)^{2}=\frac{21}{25}
Fattore x^{2}+\frac{2}{5}x+\frac{1}{25}. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{5}\right)^{2}}=\sqrt{\frac{21}{25}}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x+\frac{1}{5}=\frac{\sqrt{21}}{5} x+\frac{1}{5}=-\frac{\sqrt{21}}{5}
Semplifica.
x=\frac{\sqrt{21}-1}{5} x=\frac{-\sqrt{21}-1}{5}
Sottrai \frac{1}{5} da entrambi i lati dell'equazione.