Salta al contenuto principale
Trova x
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

x\left(28x+7\right)=0
Scomponi x in fattori.
x=0 x=-\frac{1}{4}
Per trovare soluzioni di equazione, risolvere x=0 e 28x+7=0.
28x^{2}+7x=0
Tutte le equazioni nel formato ax^{2}+bx+c=0 possono essere risolti usando la formula risolutiva per equazioni di secondo grado: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La formula risolutiva per equazioni di secondo grado fornisce due soluzioni, una quando ± è un'addizione e l'altra quando è una sottrazione.
x=\frac{-7±\sqrt{7^{2}}}{2\times 28}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci 28 a a, 7 a b e 0 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±7}{2\times 28}
Calcola la radice quadrata di 7^{2}.
x=\frac{-7±7}{56}
Moltiplica 2 per 28.
x=\frac{0}{56}
Ora risolvi l'equazione x=\frac{-7±7}{56} quando ± è più. Aggiungi -7 a 7.
x=0
Dividi 0 per 56.
x=-\frac{14}{56}
Ora risolvi l'equazione x=\frac{-7±7}{56} quando ± è meno. Sottrai 7 da -7.
x=-\frac{1}{4}
Riduci la frazione \frac{-14}{56} ai minimi termini estraendo e annullando 14.
x=0 x=-\frac{1}{4}
L'equazione è stata risolta.
28x^{2}+7x=0
Le equazioni di secondo grado come questa possono essere risolte completando il quadrato. Per completare il quadrato, l'equazione deve essere prima convertita nel formato x^{2}+bx=c.
\frac{28x^{2}+7x}{28}=\frac{0}{28}
Dividi entrambi i lati per 28.
x^{2}+\frac{7}{28}x=\frac{0}{28}
La divisione per 28 annulla la moltiplicazione per 28.
x^{2}+\frac{1}{4}x=\frac{0}{28}
Riduci la frazione \frac{7}{28} ai minimi termini estraendo e annullando 7.
x^{2}+\frac{1}{4}x=0
Dividi 0 per 28.
x^{2}+\frac{1}{4}x+\left(\frac{1}{8}\right)^{2}=\left(\frac{1}{8}\right)^{2}
Dividi \frac{1}{4}, il coefficiente del termine x, per 2 per ottenere \frac{1}{8}. Quindi aggiungi il quadrato di \frac{1}{8} a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
x^{2}+\frac{1}{4}x+\frac{1}{64}=\frac{1}{64}
Eleva \frac{1}{8} al quadrato elevando al quadrato sia il numeratore che il denominatore della frazione.
\left(x+\frac{1}{8}\right)^{2}=\frac{1}{64}
Fattore x^{2}+\frac{1}{4}x+\frac{1}{64}. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{8}\right)^{2}}=\sqrt{\frac{1}{64}}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x+\frac{1}{8}=\frac{1}{8} x+\frac{1}{8}=-\frac{1}{8}
Semplifica.
x=0 x=-\frac{1}{4}
Sottrai \frac{1}{8} da entrambi i lati dell'equazione.