Salta al contenuto principale
Trova x
Tick mark Image
Grafico

Condividi

2000\left(1+\frac{2x}{100}\right)\times 25\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica entrambi i lati dell'equazione per 100.
2000\left(1+\frac{1}{50}x\right)\times 25\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividi 2x per 100 per ottenere \frac{1}{50}x.
50000\left(1+\frac{1}{50}x\right)\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 2000 e 25 per ottenere 50000.
1000000\left(1+\frac{1}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 50000 e 20 per ottenere 1000000.
\left(1000000+1000000\times \frac{1}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Usa la proprietà distributiva per moltiplicare 1000000 per 1+\frac{1}{50}x.
\left(1000000+\frac{1000000}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 1000000 e \frac{1}{50} per ottenere \frac{1000000}{50}.
\left(1000000+20000x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividi 1000000 per 50 per ottenere 20000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Applica la proprietà distributiva moltiplicando ogni termine di 1000000+20000x per ogni termine di 1-\frac{\frac{3x}{10}}{100}.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{3}{50}x\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividi 6x per 100 per ottenere \frac{3}{50}x.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+2000\left(1+\frac{3}{50}x\right)\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 500 e 4 per ottenere 2000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(1+\frac{3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 2000 e 20 per ottenere 40000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+40000\times \frac{3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Usa la proprietà distributiva per moltiplicare 40000 per 1+\frac{3}{50}x.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+\frac{40000\times 3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Esprimi 40000\times \frac{3}{50} come singola frazione.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+\frac{120000}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 40000 e 3 per ottenere 120000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+2400x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividi 120000 per 50 per ottenere 2400.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Applica la proprietà distributiva moltiplicando ogni termine di 40000+2400x per ogni termine di 1-\frac{\frac{x}{4}}{100}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
E 1000000 e 40000 per ottenere 1040000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Combina 20000x e 2400x per ottenere 22400x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{1}{50}x\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividi 2x per 100 per ottenere \frac{1}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500\left(1+\frac{1}{50}x\right)+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 20 e 25 per ottenere 500.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+500\times \frac{1}{50}x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Usa la proprietà distributiva per moltiplicare 500 per 1+\frac{1}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+\frac{500}{50}x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 500 e \frac{1}{50} per ottenere \frac{500}{50}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividi 500 per 50 per ottenere 10.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+5\left(1+\frac{3}{50}x\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividi 6x per 100 per ottenere \frac{3}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20\left(1+\frac{3}{50}x\right)\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 5 e 4 per ottenere 20.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+20\times \frac{3}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Usa la proprietà distributiva per moltiplicare 20 per 1+\frac{3}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{20\times 3}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Esprimi 20\times \frac{3}{50} come singola frazione.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{60}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 20 e 3 per ottenere 60.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{6}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Riduci la frazione \frac{60}{50} ai minimi termini estraendo e annullando 10.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(520+10x+\frac{6}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
E 500 e 20 per ottenere 520.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(520+\frac{56}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Combina 10x e \frac{6}{5}x per ottenere \frac{56}{5}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=2000\left(520+\frac{56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 100 e 20 per ottenere 2000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+2000\times \frac{56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Usa la proprietà distributiva per moltiplicare 2000 per 520+\frac{56}{5}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+\frac{2000\times 56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Esprimi 2000\times \frac{56}{5} come singola frazione.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+\frac{112000}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 2000 e 56 per ottenere 112000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+22400x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividi 112000 per 5 per ottenere 22400.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=1040000+1040000\left(-\frac{\frac{5x}{18}}{100}\right)+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Applica la proprietà distributiva moltiplicando ogni termine di 1040000+22400x per ogni termine di 1-\frac{\frac{5x}{18}}{100}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000=1040000\left(-\frac{\frac{5x}{18}}{100}\right)+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Sottrai 1040000 da entrambi i lati.
1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=1040000\left(-\frac{\frac{5x}{18}}{100}\right)+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Sottrai 1040000 da 1040000 per ottenere 0.
1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)=22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Sottrai 1040000\left(-\frac{\frac{5x}{18}}{100}\right) da entrambi i lati.
1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x=22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Sottrai 22400x da entrambi i lati.
1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x-22400x\left(-\frac{\frac{5x}{18}}{100}\right)=0
Sottrai 22400x\left(-\frac{\frac{5x}{18}}{100}\right) da entrambi i lati.
100\left(1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x\right)-2240000x\left(-\frac{\frac{5x}{18}}{100}\right)=0
Moltiplica entrambi i lati dell'equazione per 100.
100\left(2400x\left(-\frac{x}{4\times 100}\right)+20000x\left(-\frac{3x}{10\times 100}\right)+40000\left(-\frac{x}{4\times 100}\right)+1000000\left(-\frac{3x}{10\times 100}\right)+22400x-1040000\left(-\frac{5x}{18\times 100}\right)-22400x\right)-2240000x\left(-\frac{5x}{18\times 100}\right)=0
Riordina i termini.
100\left(2400x\left(-1\right)\times \frac{x}{4\times 100}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Moltiplica 40000 e -1 per ottenere -40000. Moltiplica 1000000 e -1 per ottenere -1000000. Moltiplica -1 e 1040000 per ottenere -1040000.
100\left(-2400x\times \frac{x}{4\times 100}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Moltiplica 2400 e -1 per ottenere -2400.
100\left(-2400x\times \frac{x}{400}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Moltiplica 4 e 100 per ottenere 400.
100\left(-6xx+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Annulla il massimo comune divisore 400 in 2400 e 400.
100\left(-6xx-20000x\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Moltiplica 20000 e -1 per ottenere -20000.
100\left(-6xx-20000x\times \frac{3x}{1000}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Moltiplica 10 e 100 per ottenere 1000.
100\left(-6xx-20\times 3xx-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Annulla il massimo comune divisore 1000 in 20000 e 1000.
100\left(-6xx-20\times 3xx-40000\times \frac{x}{400}-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Moltiplica 4 e 100 per ottenere 400.
100\left(-6xx-20\times 3xx-100x-1000000\times \frac{3x}{10\times 100}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Annulla il massimo comune divisore 400 in 40000 e 400.
100\left(-6xx-20\times 3xx-100x-1000000\times \frac{3x}{1000}+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Moltiplica 10 e 100 per ottenere 1000.
100\left(-6xx-20\times 3xx-100x-1000\times 3x+22400x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Annulla il massimo comune divisore 1000 in 1000000 e 1000.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Combina -100x e 22400x per ottenere 22300x.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Moltiplica -1040000 e -1 per ottenere 1040000.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000\times \frac{x}{18\times 20}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Cancella 5 nel numeratore e nel denominatore.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000\times \frac{x}{360}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Moltiplica 18 e 20 per ottenere 360.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+\frac{1040000x}{360}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Esprimi 1040000\times \frac{x}{360} come singola frazione.
100\left(-6xx-20\times 3xx-100x-1000\times 3x+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Combina 22300x e -22400x per ottenere -100x.
100\left(-6xx-60xx-100x-3000x+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Moltiplica -20 e 3 per ottenere -60. Moltiplica -1000 e 3 per ottenere -3000.
100\left(-66xx-100x-3000x+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Combina -6xx e -60xx per ottenere -66xx.
100\left(-66xx-3100x+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Combina -100x e -3000x per ottenere -3100x.
-6600x^{2}-310000x+100\times \frac{1040000x}{360}-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Usa la proprietà distributiva per moltiplicare 100 per -66xx-3100x+\frac{1040000x}{360}.
-6600x^{2}-310000x+100\times \frac{26000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Dividi 1040000x per 360 per ottenere \frac{26000}{9}x.
-6600x^{2}-310000x+\frac{100\times 26000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Esprimi 100\times \frac{26000}{9} come singola frazione.
-6600x^{2}-310000x+\frac{2600000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Moltiplica 100 e 26000 per ottenere 2600000.
-6600x^{2}-\frac{190000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=0
Combina -310000x e \frac{2600000}{9}x per ottenere -\frac{190000}{9}x.
-6600x^{2}-\frac{190000}{9}x+2240000x\times \frac{5x}{18\times 100}=0
Moltiplica -2240000 e -1 per ottenere 2240000.
-6600x^{2}-\frac{190000}{9}x+2240000x\times \frac{x}{18\times 20}=0
Cancella 5 nel numeratore e nel denominatore.
-6600x^{2}-\frac{190000}{9}x+2240000x\times \frac{x}{360}=0
Moltiplica 18 e 20 per ottenere 360.
-6600x^{2}-\frac{190000}{9}x+\frac{2240000x}{360}x=0
Esprimi 2240000\times \frac{x}{360} come singola frazione.
-6600x^{2}-\frac{190000}{9}x+\frac{56000}{9}xx=0
Dividi 2240000x per 360 per ottenere \frac{56000}{9}x.
-6600x^{2}-\frac{190000}{9}x+\frac{56000}{9}x^{2}=0
Moltiplica x e x per ottenere x^{2}.
-\frac{3400}{9}x^{2}-\frac{190000}{9}x=0
Combina -6600x^{2} e \frac{56000}{9}x^{2} per ottenere -\frac{3400}{9}x^{2}.
x=\frac{-\left(-\frac{190000}{9}\right)±\sqrt{\left(-\frac{190000}{9}\right)^{2}}}{2\left(-\frac{3400}{9}\right)}
Questa equazione è nel formato standard: ax^{2}+bx+c=0. Sostituisci -\frac{3400}{9} a a, -\frac{190000}{9} a b e 0 a c nella formula risolutiva per equazioni di secondo grado \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{190000}{9}\right)±\frac{190000}{9}}{2\left(-\frac{3400}{9}\right)}
Calcola la radice quadrata di \left(-\frac{190000}{9}\right)^{2}.
x=\frac{\frac{190000}{9}±\frac{190000}{9}}{2\left(-\frac{3400}{9}\right)}
L'opposto di -\frac{190000}{9} è \frac{190000}{9}.
x=\frac{\frac{190000}{9}±\frac{190000}{9}}{-\frac{6800}{9}}
Moltiplica 2 per -\frac{3400}{9}.
x=\frac{\frac{380000}{9}}{-\frac{6800}{9}}
Ora risolvi l'equazione x=\frac{\frac{190000}{9}±\frac{190000}{9}}{-\frac{6800}{9}} quando ± è più. Aggiungi \frac{190000}{9} a \frac{190000}{9} trovando un denominatore comune e sommando i numeratori, quindi riduci la frazione ai minimi termini, se possibile.
x=-\frac{950}{17}
Dividi \frac{380000}{9} per-\frac{6800}{9} moltiplicando \frac{380000}{9} per il reciproco di -\frac{6800}{9}.
x=\frac{0}{-\frac{6800}{9}}
Ora risolvi l'equazione x=\frac{\frac{190000}{9}±\frac{190000}{9}}{-\frac{6800}{9}} quando ± è meno. Sottrai \frac{190000}{9} da \frac{190000}{9} trovando un denominatore comune e sottraendo i numeratori, quindi riduci la frazione ai minimi termini, se possibile.
x=0
Dividi 0 per-\frac{6800}{9} moltiplicando 0 per il reciproco di -\frac{6800}{9}.
x=-\frac{950}{17} x=0
L'equazione è stata risolta.
2000\left(1+\frac{2x}{100}\right)\times 25\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica entrambi i lati dell'equazione per 100.
2000\left(1+\frac{1}{50}x\right)\times 25\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividi 2x per 100 per ottenere \frac{1}{50}x.
50000\left(1+\frac{1}{50}x\right)\times 20\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 2000 e 25 per ottenere 50000.
1000000\left(1+\frac{1}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 50000 e 20 per ottenere 1000000.
\left(1000000+1000000\times \frac{1}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Usa la proprietà distributiva per moltiplicare 1000000 per 1+\frac{1}{50}x.
\left(1000000+\frac{1000000}{50}x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 1000000 e \frac{1}{50} per ottenere \frac{1000000}{50}.
\left(1000000+20000x\right)\left(1-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividi 1000000 per 50 per ottenere 20000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{6x}{100}\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Applica la proprietà distributiva moltiplicando ogni termine di 1000000+20000x per ogni termine di 1-\frac{\frac{3x}{10}}{100}.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+500\left(1+\frac{3}{50}x\right)\times 4\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividi 6x per 100 per ottenere \frac{3}{50}x.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+2000\left(1+\frac{3}{50}x\right)\times 20\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 500 e 4 per ottenere 2000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(1+\frac{3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 2000 e 20 per ottenere 40000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+40000\times \frac{3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Usa la proprietà distributiva per moltiplicare 40000 per 1+\frac{3}{50}x.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+\frac{40000\times 3}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Esprimi 40000\times \frac{3}{50} come singola frazione.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+\frac{120000}{50}x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 40000 e 3 per ottenere 120000.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+\left(40000+2400x\right)\left(1-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividi 120000 per 50 per ottenere 2400.
1000000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Applica la proprietà distributiva moltiplicando ogni termine di 40000+2400x per ogni termine di 1-\frac{\frac{x}{4}}{100}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+20000x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
E 1000000 e 40000 per ottenere 1040000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{2x}{100}\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Combina 20000x e 2400x per ottenere 22400x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(20\left(1+\frac{1}{50}x\right)\times 25+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividi 2x per 100 per ottenere \frac{1}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500\left(1+\frac{1}{50}x\right)+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 20 e 25 per ottenere 500.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+500\times \frac{1}{50}x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Usa la proprietà distributiva per moltiplicare 500 per 1+\frac{1}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+\frac{500}{50}x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 500 e \frac{1}{50} per ottenere \frac{500}{50}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+5\left(1+\frac{6x}{100}\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividi 500 per 50 per ottenere 10.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+5\left(1+\frac{3}{50}x\right)\times 4\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividi 6x per 100 per ottenere \frac{3}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20\left(1+\frac{3}{50}x\right)\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 5 e 4 per ottenere 20.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+20\times \frac{3}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Usa la proprietà distributiva per moltiplicare 20 per 1+\frac{3}{50}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{20\times 3}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Esprimi 20\times \frac{3}{50} come singola frazione.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{60}{50}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 20 e 3 per ottenere 60.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(500+10x+20+\frac{6}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Riduci la frazione \frac{60}{50} ai minimi termini estraendo e annullando 10.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(520+10x+\frac{6}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
E 500 e 20 per ottenere 520.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=100\left(520+\frac{56}{5}x\right)\times 20\left(1-\frac{\frac{5x}{18}}{100}\right)
Combina 10x e \frac{6}{5}x per ottenere \frac{56}{5}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=2000\left(520+\frac{56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 100 e 20 per ottenere 2000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+2000\times \frac{56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Usa la proprietà distributiva per moltiplicare 2000 per 520+\frac{56}{5}x.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+\frac{2000\times 56}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Esprimi 2000\times \frac{56}{5} come singola frazione.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+\frac{112000}{5}x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Moltiplica 2000 e 56 per ottenere 112000.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=\left(1040000+22400x\right)\left(1-\frac{\frac{5x}{18}}{100}\right)
Dividi 112000 per 5 per ottenere 22400.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)=1040000+1040000\left(-\frac{\frac{5x}{18}}{100}\right)+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Applica la proprietà distributiva moltiplicando ogni termine di 1040000+22400x per ogni termine di 1-\frac{\frac{5x}{18}}{100}.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)=1040000+22400x+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Sottrai 1040000\left(-\frac{\frac{5x}{18}}{100}\right) da entrambi i lati.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x=1040000+22400x\left(-\frac{\frac{5x}{18}}{100}\right)
Sottrai 22400x da entrambi i lati.
1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x-22400x\left(-\frac{\frac{5x}{18}}{100}\right)=1040000
Sottrai 22400x\left(-\frac{\frac{5x}{18}}{100}\right) da entrambi i lati.
100\left(1040000+1000000\left(-\frac{\frac{3x}{10}}{100}\right)+22400x+20000x\left(-\frac{\frac{3x}{10}}{100}\right)+40000\left(-\frac{\frac{x}{4}}{100}\right)+2400x\left(-\frac{\frac{x}{4}}{100}\right)-1040000\left(-\frac{\frac{5x}{18}}{100}\right)-22400x\right)-2240000x\left(-\frac{\frac{5x}{18}}{100}\right)=104000000
Moltiplica entrambi i lati dell'equazione per 100.
100\left(2400x\left(-\frac{x}{4\times 100}\right)+20000x\left(-\frac{3x}{10\times 100}\right)+40000\left(-\frac{x}{4\times 100}\right)+1000000\left(-\frac{3x}{10\times 100}\right)+22400x+1040000-1040000\left(-\frac{5x}{18\times 100}\right)-22400x\right)-2240000x\left(-\frac{5x}{18\times 100}\right)=104000000
Riordina i termini.
100\left(2400x\left(-1\right)\times \frac{x}{4\times 100}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Moltiplica 40000 e -1 per ottenere -40000. Moltiplica 1000000 e -1 per ottenere -1000000. Moltiplica -1 e 1040000 per ottenere -1040000.
100\left(-2400x\times \frac{x}{4\times 100}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Moltiplica 2400 e -1 per ottenere -2400.
100\left(-2400x\times \frac{x}{400}+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Moltiplica 4 e 100 per ottenere 400.
100\left(-6xx+20000x\left(-1\right)\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Annulla il massimo comune divisore 400 in 2400 e 400.
100\left(-6xx-20000x\times \frac{3x}{10\times 100}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Moltiplica 20000 e -1 per ottenere -20000.
100\left(-6xx-20000x\times \frac{3x}{1000}-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Moltiplica 10 e 100 per ottenere 1000.
100\left(-6xx-20\times 3xx-40000\times \frac{x}{4\times 100}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Annulla il massimo comune divisore 1000 in 20000 e 1000.
100\left(-6xx-20\times 3xx-40000\times \frac{x}{400}-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Moltiplica 4 e 100 per ottenere 400.
100\left(-6xx-20\times 3xx-100x-1000000\times \frac{3x}{10\times 100}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Annulla il massimo comune divisore 400 in 40000 e 400.
100\left(-6xx-20\times 3xx-100x-1000000\times \frac{3x}{1000}+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Moltiplica 10 e 100 per ottenere 1000.
100\left(-6xx-20\times 3xx-100x-1000\times 3x+22400x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Annulla il massimo comune divisore 1000 in 1000000 e 1000.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000-1040000\left(-1\right)\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Combina -100x e 22400x per ottenere 22300x.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000+1040000\times \frac{5x}{18\times 100}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Moltiplica -1040000 e -1 per ottenere 1040000.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000+1040000\times \frac{x}{18\times 20}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Cancella 5 nel numeratore e nel denominatore.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000+1040000\times \frac{x}{360}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Moltiplica 18 e 20 per ottenere 360.
100\left(-6xx-20\times 3xx+22300x-1000\times 3x+1040000+\frac{1040000x}{360}-22400x\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Esprimi 1040000\times \frac{x}{360} come singola frazione.
100\left(-6xx-20\times 3xx-100x-1000\times 3x+1040000+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Combina 22300x e -22400x per ottenere -100x.
100\left(-6xx-60xx-100x-3000x+1040000+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Moltiplica -20 e 3 per ottenere -60. Moltiplica -1000 e 3 per ottenere -3000.
100\left(-66xx-100x-3000x+1040000+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Combina -6xx e -60xx per ottenere -66xx.
100\left(-66xx-3100x+1040000+\frac{1040000x}{360}\right)-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Combina -100x e -3000x per ottenere -3100x.
-6600x^{2}-310000x+104000000+100\times \frac{1040000x}{360}-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Usa la proprietà distributiva per moltiplicare 100 per -66xx-3100x+1040000+\frac{1040000x}{360}.
-6600x^{2}-310000x+104000000+100\times \frac{26000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Dividi 1040000x per 360 per ottenere \frac{26000}{9}x.
-6600x^{2}-310000x+104000000+\frac{100\times 26000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Esprimi 100\times \frac{26000}{9} come singola frazione.
-6600x^{2}-310000x+104000000+\frac{2600000}{9}x-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Moltiplica 100 e 26000 per ottenere 2600000.
-6600x^{2}-\frac{190000}{9}x+104000000-2240000x\left(-1\right)\times \frac{5x}{18\times 100}=104000000
Combina -310000x e \frac{2600000}{9}x per ottenere -\frac{190000}{9}x.
-6600x^{2}-\frac{190000}{9}x+104000000+2240000x\times \frac{5x}{18\times 100}=104000000
Moltiplica -2240000 e -1 per ottenere 2240000.
-6600x^{2}-\frac{190000}{9}x+104000000+2240000x\times \frac{x}{18\times 20}=104000000
Cancella 5 nel numeratore e nel denominatore.
-6600x^{2}-\frac{190000}{9}x+104000000+2240000x\times \frac{x}{360}=104000000
Moltiplica 18 e 20 per ottenere 360.
-6600x^{2}-\frac{190000}{9}x+104000000+\frac{2240000x}{360}x=104000000
Esprimi 2240000\times \frac{x}{360} come singola frazione.
-6600x^{2}-\frac{190000}{9}x+104000000+\frac{56000}{9}xx=104000000
Dividi 2240000x per 360 per ottenere \frac{56000}{9}x.
-6600x^{2}-\frac{190000}{9}x+104000000+\frac{56000}{9}x^{2}=104000000
Moltiplica x e x per ottenere x^{2}.
-\frac{3400}{9}x^{2}-\frac{190000}{9}x+104000000=104000000
Combina -6600x^{2} e \frac{56000}{9}x^{2} per ottenere -\frac{3400}{9}x^{2}.
-\frac{3400}{9}x^{2}-\frac{190000}{9}x=104000000-104000000
Sottrai 104000000 da entrambi i lati.
-\frac{3400}{9}x^{2}-\frac{190000}{9}x=0
Sottrai 104000000 da 104000000 per ottenere 0.
\frac{-\frac{3400}{9}x^{2}-\frac{190000}{9}x}{-\frac{3400}{9}}=\frac{0}{-\frac{3400}{9}}
Dividi entrambi i lati dell'equazione per -\frac{3400}{9}, che equivale a moltiplicare entrambi i lati per il reciproco della frazione.
x^{2}+\left(-\frac{\frac{190000}{9}}{-\frac{3400}{9}}\right)x=\frac{0}{-\frac{3400}{9}}
La divisione per -\frac{3400}{9} annulla la moltiplicazione per -\frac{3400}{9}.
x^{2}+\frac{950}{17}x=\frac{0}{-\frac{3400}{9}}
Dividi -\frac{190000}{9} per-\frac{3400}{9} moltiplicando -\frac{190000}{9} per il reciproco di -\frac{3400}{9}.
x^{2}+\frac{950}{17}x=0
Dividi 0 per-\frac{3400}{9} moltiplicando 0 per il reciproco di -\frac{3400}{9}.
x^{2}+\frac{950}{17}x+\left(\frac{475}{17}\right)^{2}=\left(\frac{475}{17}\right)^{2}
Dividi \frac{950}{17}, il coefficiente del termine x, per 2 per ottenere \frac{475}{17}. Quindi aggiungi il quadrato di \frac{475}{17} a entrambi i lati dell'equazione. Con questo passaggio, il lato sinistro dell'equazione diventa un quadrato perfetto.
x^{2}+\frac{950}{17}x+\frac{225625}{289}=\frac{225625}{289}
Eleva \frac{475}{17} al quadrato elevando al quadrato sia il numeratore che il denominatore della frazione.
\left(x+\frac{475}{17}\right)^{2}=\frac{225625}{289}
Fattore x^{2}+\frac{950}{17}x+\frac{225625}{289}. In generale, quando x^{2}+bx+c è un quadrato perfetto, può sempre essere scomplicato come \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{475}{17}\right)^{2}}=\sqrt{\frac{225625}{289}}
Calcola la radice quadrata di entrambi i lati dell'equazione.
x+\frac{475}{17}=\frac{475}{17} x+\frac{475}{17}=-\frac{475}{17}
Semplifica.
x=0 x=-\frac{950}{17}
Sottrai \frac{475}{17} da entrambi i lati dell'equazione.