Salta al contenuto principale
Calcola
Tick mark Image
Differenzia rispetto a x
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

\left(x^{\frac{7}{5}}\right)^{-\frac{5}{3}}
Usa le regole degli esponenti per semplificare l'espressione.
x^{\frac{7}{5}\left(-\frac{5}{3}\right)}
Per elevare una potenza a un'altra potenza, moltiplica gli esponenti.
\frac{1}{x^{\frac{7}{3}}}
Moltiplica \frac{7}{5} per -\frac{5}{3} moltiplicando il numeratore per il numeratore e il denominatore per il denominatore, quindi riduci la frazione ai minimi termini, se possibile.
-\frac{5}{3}\left(x^{\frac{7}{5}}\right)^{-\frac{5}{3}-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{\frac{7}{5}})
Se F è la composizione delle due funzioni differenziabili f\left(u\right) e u=g\left(x\right), ossia, se F\left(x\right)=f\left(g\left(x\right)\right), quindi la derivata di F è uguale alla derivata di f rispetto a u moltiplicata per la derivata di g rispetto a x, ossia, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\frac{5}{3}\left(x^{\frac{7}{5}}\right)^{-\frac{8}{3}}\times \frac{7}{5}x^{\frac{7}{5}-1}
La derivata di un polinomio è la somma delle derivate dei relativi termini. La derivata di un termine costante è 0. La derivata di ax^{n} è nax^{n-1}.
-\frac{7}{3}x^{\frac{2}{5}}\left(x^{\frac{7}{5}}\right)^{-\frac{8}{3}}
Semplifica.