Salta al contenuto principale
Calcola
Tick mark Image

Problemi simili da ricerca Web

Condividi

\frac{\sqrt{9}}{\sqrt{2}}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Riscrivi la radice quadrata del \sqrt{\frac{9}{2}} di divisione come divisione delle radici quadrate \frac{\sqrt{9}}{\sqrt{2}}.
\frac{3}{\sqrt{2}}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Calcola la radice quadrata di 9 e ottieni 3.
\frac{3\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Razionalizza il denominatore di \frac{3}{\sqrt{2}} moltiplicando il numeratore e il denominatore per \sqrt{2}.
\frac{3\sqrt{2}}{2}+\sqrt{\frac{25}{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Il quadrato di \sqrt{2} è 2.
\frac{3\sqrt{2}}{2}+\frac{\sqrt{25}}{\sqrt{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Riscrivi la radice quadrata del \sqrt{\frac{25}{8}} di divisione come divisione delle radici quadrate \frac{\sqrt{25}}{\sqrt{8}}.
\frac{3\sqrt{2}}{2}+\frac{5}{\sqrt{8}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Calcola la radice quadrata di 25 e ottieni 5.
\frac{3\sqrt{2}}{2}+\frac{5}{2\sqrt{2}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Fattorizzare 8=2^{2}\times 2. Riscrivi la radice quadrata del prodotto \sqrt{2^{2}\times 2} come prodotto di radici quadrate \sqrt{2^{2}}\sqrt{2}. Calcola la radice quadrata di 2^{2}.
\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Razionalizza il denominatore di \frac{5}{2\sqrt{2}} moltiplicando il numeratore e il denominatore per \sqrt{2}.
\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{2\times 2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Il quadrato di \sqrt{2} è 2.
\frac{3\sqrt{2}}{2}+\frac{5\sqrt{2}}{4}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Moltiplica 2 e 2 per ottenere 4.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\sqrt{\frac{1}{8}}
Combina \frac{3\sqrt{2}}{2} e \frac{5\sqrt{2}}{4} per ottenere \frac{11}{4}\sqrt{2}.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{1}}{\sqrt{8}}
Riscrivi la radice quadrata del \sqrt{\frac{1}{8}} di divisione come divisione delle radici quadrate \frac{\sqrt{1}}{\sqrt{8}}.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{1}{\sqrt{8}}
Calcola la radice quadrata di 1 e ottieni 1.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{1}{2\sqrt{2}}
Fattorizzare 8=2^{2}\times 2. Riscrivi la radice quadrata del prodotto \sqrt{2^{2}\times 2} come prodotto di radici quadrate \sqrt{2^{2}}\sqrt{2}. Calcola la radice quadrata di 2^{2}.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}
Razionalizza il denominatore di \frac{1}{2\sqrt{2}} moltiplicando il numeratore e il denominatore per \sqrt{2}.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{2}}{2\times 2}
Il quadrato di \sqrt{2} è 2.
\frac{11}{4}\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}+\frac{\sqrt{2}}{4}
Moltiplica 2 e 2 per ottenere 4.
3\sqrt{2}+\sqrt[3]{3000}-8\sqrt[3]{3}-\sqrt[3]{24}
Combina \frac{11}{4}\sqrt{2} e \frac{\sqrt{2}}{4} per ottenere 3\sqrt{2}.