Salta al contenuto principale
Calcola
Tick mark Image
Differenzia rispetto a x
Tick mark Image

Problemi simili da ricerca Web

Condividi

\int x^{3}\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int \frac{1}{x^{\frac{2}{3}}}\mathrm{d}x
Integra la somma termine per termine.
\int x^{3}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int \frac{1}{x^{\frac{2}{3}}}\mathrm{d}x
Fattorizza la costante in ogni termine.
\frac{x^{4}}{4}-2\int x^{2}\mathrm{d}x+\int \frac{1}{x^{\frac{2}{3}}}\mathrm{d}x
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x^{3}\mathrm{d}x con \frac{x^{4}}{4}.
\frac{x^{4}}{4}-\frac{2x^{3}}{3}+\int \frac{1}{x^{\frac{2}{3}}}\mathrm{d}x
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x^{2}\mathrm{d}x con \frac{x^{3}}{3}. Moltiplica -2 per \frac{x^{3}}{3}.
\frac{x^{4}}{4}-\frac{2x^{3}}{3}+3\sqrt[3]{x}
Riscrivi \frac{1}{x^{\frac{2}{3}}} come x^{-\frac{2}{3}}. Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x^{-\frac{2}{3}}\mathrm{d}x con \frac{x^{\frac{1}{3}}}{\frac{1}{3}}. Semplifica e converti da potenza a radicale.
\frac{x^{4}}{4}-\frac{2x^{3}}{3}+3\sqrt[3]{x}+С
Se F\left(x\right) è un antiderivata di f\left(x\right), il set di tutte le antiderivatives f\left(x\right) viene specificato da F\left(x\right)+C. Pertanto, aggiungere la costante di integrazione C\in \mathrm{R} al risultato.