Salta al contenuto principale
Calcola
Tick mark Image
Differenzia rispetto a x
Tick mark Image

Problemi simili da ricerca Web

Condividi

\int 64-240x+300x^{2}-125x^{3}\mathrm{d}x
Usare il teorema binomiale \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} per espandere \left(4-5x\right)^{3}.
\int 64\mathrm{d}x+\int -240x\mathrm{d}x+\int 300x^{2}\mathrm{d}x+\int -125x^{3}\mathrm{d}x
Integra la somma termine per termine.
\int 64\mathrm{d}x-240\int x\mathrm{d}x+300\int x^{2}\mathrm{d}x-125\int x^{3}\mathrm{d}x
Fattorizza la costante in ogni termine.
64x-240\int x\mathrm{d}x+300\int x^{2}\mathrm{d}x-125\int x^{3}\mathrm{d}x
Trova il integrale di 64 che utilizza la tabella di regole di integrali più comuni \int a\mathrm{d}x=ax.
64x-120x^{2}+300\int x^{2}\mathrm{d}x-125\int x^{3}\mathrm{d}x
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x\mathrm{d}x con \frac{x^{2}}{2}. Moltiplica -240 per \frac{x^{2}}{2}.
64x-120x^{2}+100x^{3}-125\int x^{3}\mathrm{d}x
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x^{2}\mathrm{d}x con \frac{x^{3}}{3}. Moltiplica 300 per \frac{x^{3}}{3}.
64x-120x^{2}+100x^{3}-\frac{125x^{4}}{4}
Poiché \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} per k\neq -1, Sostituisci \int x^{3}\mathrm{d}x con \frac{x^{4}}{4}. Moltiplica -125 per \frac{x^{4}}{4}.
64x-120x^{2}+100x^{3}-\frac{125x^{4}}{4}+С
Se F\left(x\right) è un antiderivata di f\left(x\right), il set di tutte le antiderivatives f\left(x\right) viene specificato da F\left(x\right)+C. Pertanto, aggiungere la costante di integrazione C\in \mathrm{R} al risultato.