Trova x
x=-\frac{1}{3}\approx -0,333333333
Grafico
Condividi
Copiato negli Appunti
\left(3x-1\right)\times 3+6xx\left(3x-1\right)+x\left(3x-1\right)\times 5-x\left(6x+1\right)=3xx\left(3x-1\right)+x\left(9x+6\right)+\left(3x-1\right)\left(3x^{2}+1\right)
La variabile x non può essere uguale a uno dei valori 0,\frac{1}{3} perché la divisione per zero non è definita. Moltiplica entrambi i lati dell'equazione per x\left(3x-1\right), il minimo comune multiplo di x,3x-1.
9x-3+6xx\left(3x-1\right)+x\left(3x-1\right)\times 5-x\left(6x+1\right)=3xx\left(3x-1\right)+x\left(9x+6\right)+\left(3x-1\right)\left(3x^{2}+1\right)
Usa la proprietà distributiva per moltiplicare 3x-1 per 3.
9x-3+6x^{2}\left(3x-1\right)+x\left(3x-1\right)\times 5-x\left(6x+1\right)=3xx\left(3x-1\right)+x\left(9x+6\right)+\left(3x-1\right)\left(3x^{2}+1\right)
Moltiplica x e x per ottenere x^{2}.
9x-3+18x^{3}-6x^{2}+x\left(3x-1\right)\times 5-x\left(6x+1\right)=3xx\left(3x-1\right)+x\left(9x+6\right)+\left(3x-1\right)\left(3x^{2}+1\right)
Usa la proprietà distributiva per moltiplicare 6x^{2} per 3x-1.
9x-3+18x^{3}-6x^{2}+\left(3x^{2}-x\right)\times 5-x\left(6x+1\right)=3xx\left(3x-1\right)+x\left(9x+6\right)+\left(3x-1\right)\left(3x^{2}+1\right)
Usa la proprietà distributiva per moltiplicare x per 3x-1.
9x-3+18x^{3}-6x^{2}+15x^{2}-5x-x\left(6x+1\right)=3xx\left(3x-1\right)+x\left(9x+6\right)+\left(3x-1\right)\left(3x^{2}+1\right)
Usa la proprietà distributiva per moltiplicare 3x^{2}-x per 5.
9x-3+18x^{3}+9x^{2}-5x-x\left(6x+1\right)=3xx\left(3x-1\right)+x\left(9x+6\right)+\left(3x-1\right)\left(3x^{2}+1\right)
Combina -6x^{2} e 15x^{2} per ottenere 9x^{2}.
4x-3+18x^{3}+9x^{2}-x\left(6x+1\right)=3xx\left(3x-1\right)+x\left(9x+6\right)+\left(3x-1\right)\left(3x^{2}+1\right)
Combina 9x e -5x per ottenere 4x.
4x-3+18x^{3}+9x^{2}-\left(6x^{2}+x\right)=3xx\left(3x-1\right)+x\left(9x+6\right)+\left(3x-1\right)\left(3x^{2}+1\right)
Usa la proprietà distributiva per moltiplicare x per 6x+1.
4x-3+18x^{3}+9x^{2}-6x^{2}-x=3xx\left(3x-1\right)+x\left(9x+6\right)+\left(3x-1\right)\left(3x^{2}+1\right)
Per trovare l'opposto di 6x^{2}+x, trova l'opposto di ogni termine.
4x-3+18x^{3}+3x^{2}-x=3xx\left(3x-1\right)+x\left(9x+6\right)+\left(3x-1\right)\left(3x^{2}+1\right)
Combina 9x^{2} e -6x^{2} per ottenere 3x^{2}.
3x-3+18x^{3}+3x^{2}=3xx\left(3x-1\right)+x\left(9x+6\right)+\left(3x-1\right)\left(3x^{2}+1\right)
Combina 4x e -x per ottenere 3x.
3x-3+18x^{3}+3x^{2}=3x^{2}\left(3x-1\right)+x\left(9x+6\right)+\left(3x-1\right)\left(3x^{2}+1\right)
Moltiplica x e x per ottenere x^{2}.
3x-3+18x^{3}+3x^{2}=9x^{3}-3x^{2}+x\left(9x+6\right)+\left(3x-1\right)\left(3x^{2}+1\right)
Usa la proprietà distributiva per moltiplicare 3x^{2} per 3x-1.
3x-3+18x^{3}+3x^{2}=9x^{3}-3x^{2}+9x^{2}+6x+\left(3x-1\right)\left(3x^{2}+1\right)
Usa la proprietà distributiva per moltiplicare x per 9x+6.
3x-3+18x^{3}+3x^{2}=9x^{3}+6x^{2}+6x+\left(3x-1\right)\left(3x^{2}+1\right)
Combina -3x^{2} e 9x^{2} per ottenere 6x^{2}.
3x-3+18x^{3}+3x^{2}=9x^{3}+6x^{2}+6x+9x^{3}+3x-3x^{2}-1
Usa la proprietà distributiva per moltiplicare 3x-1 per 3x^{2}+1.
3x-3+18x^{3}+3x^{2}=18x^{3}+6x^{2}+6x+3x-3x^{2}-1
Combina 9x^{3} e 9x^{3} per ottenere 18x^{3}.
3x-3+18x^{3}+3x^{2}=18x^{3}+6x^{2}+9x-3x^{2}-1
Combina 6x e 3x per ottenere 9x.
3x-3+18x^{3}+3x^{2}=18x^{3}+3x^{2}+9x-1
Combina 6x^{2} e -3x^{2} per ottenere 3x^{2}.
3x-3+18x^{3}+3x^{2}-18x^{3}=3x^{2}+9x-1
Sottrai 18x^{3} da entrambi i lati.
3x-3+3x^{2}=3x^{2}+9x-1
Combina 18x^{3} e -18x^{3} per ottenere 0.
3x-3+3x^{2}-3x^{2}=9x-1
Sottrai 3x^{2} da entrambi i lati.
3x-3=9x-1
Combina 3x^{2} e -3x^{2} per ottenere 0.
3x-3-9x=-1
Sottrai 9x da entrambi i lati.
-6x-3=-1
Combina 3x e -9x per ottenere -6x.
-6x=-1+3
Aggiungi 3 a entrambi i lati.
-6x=2
E -1 e 3 per ottenere 2.
x=\frac{2}{-6}
Dividi entrambi i lati per -6.
x=-\frac{1}{3}
Riduci la frazione \frac{2}{-6} ai minimi termini estraendo e annullando 2.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}