Salta al contenuto principale
Risolvi per x
Tick mark Image
Grafico

Problemi simili da ricerca Web

Condividi

3\left(1-x\right)^{2}-2\left(x-1\right)<12+3x^{2}
Moltiplica entrambi i lati dell'equazione per 6, il minimo comune multiplo di 2,3. Poiché 6 è positivo, la direzione della disequazione rimane la stessa.
3\left(1-2x+x^{2}\right)-2\left(x-1\right)<12+3x^{2}
Usare il teorema binomiale \left(a-b\right)^{2}=a^{2}-2ab+b^{2} per espandere \left(1-x\right)^{2}.
3-6x+3x^{2}-2\left(x-1\right)<12+3x^{2}
Usa la proprietà distributiva per moltiplicare 3 per 1-2x+x^{2}.
3-6x+3x^{2}-2x+2<12+3x^{2}
Usa la proprietà distributiva per moltiplicare -2 per x-1.
3-8x+3x^{2}+2<12+3x^{2}
Combina -6x e -2x per ottenere -8x.
5-8x+3x^{2}<12+3x^{2}
E 3 e 2 per ottenere 5.
5-8x+3x^{2}-3x^{2}<12
Sottrai 3x^{2} da entrambi i lati.
5-8x<12
Combina 3x^{2} e -3x^{2} per ottenere 0.
-8x<12-5
Sottrai 5 da entrambi i lati.
-8x<7
Sottrai 5 da 12 per ottenere 7.
x>-\frac{7}{8}
Dividi entrambi i lati per -8. Dal momento che -8 è negativo, la direzione della disuguaglianza è cambiata.