Calcola
\frac{1}{a\left(a-2\right)}
Differenzia rispetto a a
\frac{2\left(1-a\right)}{\left(a\left(a-2\right)\right)^{2}}
Condividi
Copiato negli Appunti
\frac{a\left(a+2\right)}{\left(a^{2}-4\right)a^{2}}
Dividi \frac{a}{a^{2}-4} per\frac{a^{2}}{a+2} moltiplicando \frac{a}{a^{2}-4} per il reciproco di \frac{a^{2}}{a+2}.
\frac{a+2}{a\left(a^{2}-4\right)}
Cancella a nel numeratore e nel denominatore.
\frac{a+2}{a\left(a-2\right)\left(a+2\right)}
Scomponi in fattori le espressioni che non sono già scomposte.
\frac{1}{a\left(a-2\right)}
Cancella a+2 nel numeratore e nel denominatore.
\frac{1}{a^{2}-2a}
Espandi l'espressione.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a+2\right)}{\left(a^{2}-4\right)a^{2}})
Dividi \frac{a}{a^{2}-4} per\frac{a^{2}}{a+2} moltiplicando \frac{a}{a^{2}-4} per il reciproco di \frac{a^{2}}{a+2}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+2}{a\left(a^{2}-4\right)})
Cancella a nel numeratore e nel denominatore.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a+2}{a\left(a-2\right)\left(a+2\right)})
Scomponi in fattori le espressioni che non sono già scomposte in "\frac{a+2}{a\left(a^{2}-4\right)}".
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a\left(a-2\right)})
Cancella a+2 nel numeratore e nel denominatore.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a^{2}-2a})
Usa la proprietà distributiva per moltiplicare a per a-2.
-\left(a^{2}-2a^{1}\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}-2a^{1})
Se F è la composizione delle due funzioni differenziabili f\left(u\right) e u=g\left(x\right), ossia, se F\left(x\right)=f\left(g\left(x\right)\right), quindi la derivata di F è uguale alla derivata di f rispetto a u moltiplicata per la derivata di g rispetto a x, ossia, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(a^{2}-2a^{1}\right)^{-2}\left(2a^{2-1}-2a^{1-1}\right)
La derivata di un polinomio è la somma delle derivate dei relativi termini. La derivata di un termine costante è 0. La derivata di ax^{n} è nax^{n-1}.
\left(a^{2}-2a^{1}\right)^{-2}\left(-2a^{1}+2a^{0}\right)
Semplifica.
\left(a^{2}-2a\right)^{-2}\left(-2a+2a^{0}\right)
Per qualsiasi termine t, t^{1}=t.
\left(a^{2}-2a\right)^{-2}\left(-2a+2\times 1\right)
Per qualsiasi termine t tranne 0, t^{0}=1.
\left(a^{2}-2a\right)^{-2}\left(-2a+2\right)
Per qualsiasi termine t, t\times 1=t e 1t=t.
Esempi
Equazione quadratica
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Equazione lineare
y = 3x + 4
Aritmetica
699 * 533
Matrice
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Equazione simultanea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differenziazione
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazione
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limiti
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}