Leystu fyrir x
\left\{\begin{matrix}x=0\text{, }&y=0\\x=-\frac{2^{\frac{2}{3}}\left(1+\sqrt{3}i\right)\left(\sqrt{y^{3}\left(y^{3}-4\right)}-y^{3}\right)^{-\frac{1}{3}}\left(\left(-\sqrt{3}i-1\right)\left(\sqrt{y^{3}\left(y^{3}-4\right)}-y^{3}\right)^{\frac{2}{3}}+2\times 2^{\frac{2}{3}}y\right)}{8}\text{; }x=\frac{2^{\frac{2}{3}}\left(\sqrt{y^{3}\left(y^{3}-4\right)}-y^{3}\right)^{-\frac{1}{3}}\left(\left(\sqrt{y^{3}\left(y^{3}-4\right)}-y^{3}\right)^{\frac{2}{3}}+2^{\frac{2}{3}}y\right)}{2}\text{; }x=-\frac{2^{\frac{2}{3}}\left(-\sqrt{3}i+1\right)\left(\sqrt{y^{3}\left(y^{3}-4\right)}-y^{3}\right)^{-\frac{1}{3}}\left(\left(-1+\sqrt{3}i\right)\left(\sqrt{y^{3}\left(y^{3}-4\right)}-y^{3}\right)^{\frac{2}{3}}+2\times 2^{\frac{2}{3}}y\right)}{8}\text{, }&y\neq 0\end{matrix}\right.
Leystu fyrir y
\left\{\begin{matrix}y=0\text{, }&x=0\\y=-\frac{2^{\frac{2}{3}}\left(1+\sqrt{3}i\right)\left(\sqrt{x^{3}\left(x^{3}-4\right)}-x^{3}\right)^{-\frac{1}{3}}\left(\left(-\sqrt{3}i-1\right)\left(\sqrt{x^{3}\left(x^{3}-4\right)}-x^{3}\right)^{\frac{2}{3}}+2\times 2^{\frac{2}{3}}x\right)}{8}\text{; }y=\frac{2^{\frac{2}{3}}\left(\sqrt{x^{3}\left(x^{3}-4\right)}-x^{3}\right)^{-\frac{1}{3}}\left(\left(\sqrt{x^{3}\left(x^{3}-4\right)}-x^{3}\right)^{\frac{2}{3}}+2^{\frac{2}{3}}x\right)}{2}\text{; }y=-\frac{2^{\frac{2}{3}}\left(-\sqrt{3}i+1\right)\left(\sqrt{x^{3}\left(x^{3}-4\right)}-x^{3}\right)^{-\frac{1}{3}}\left(\left(-1+\sqrt{3}i\right)\left(\sqrt{x^{3}\left(x^{3}-4\right)}-x^{3}\right)^{\frac{2}{3}}+2\times 2^{\frac{2}{3}}x\right)}{8}\text{, }&x\neq 0\end{matrix}\right.
Deila
Afritað á klemmuspjald
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}