Leystu fyrir x
x=3
x=8
Graf
Deila
Afritað á klemmuspjald
a+b=-11 ab=24
Leystu jöfnuna með því að þátta x^{2}-11x+24 með formúlunni x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Settu upp kerfi til að leysa til þess að finna a og b.
-1,-24 -2,-12 -3,-8 -4,-6
Fyrst ab er plús hafa a og b sama merki. Fyrst a+b er mínus eru a og b bæði mínus. Skráðu inn öll slík pör sem gefa margfeldið 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Reiknaðu summuna fyrir hvert par.
a=-8 b=-3
Lausnin er parið sem gefur summuna -11.
\left(x-8\right)\left(x-3\right)
Endurskrifaðu þáttuðu segðina \left(x+a\right)\left(x+b\right) með því að nota fengin gildi.
x=8 x=3
Leystu x-8=0 og x-3=0 til að finna lausnir jöfnunnar.
a+b=-11 ab=1\times 24=24
Þáttaðu vinstri hliðina með því að flokka til að leysa jöfnuna. Fyrst þarf að endurskrifa vinstri hlið sem x^{2}+ax+bx+24. Settu upp kerfi til að leysa til þess að finna a og b.
-1,-24 -2,-12 -3,-8 -4,-6
Fyrst ab er plús hafa a og b sama merki. Fyrst a+b er mínus eru a og b bæði mínus. Skráðu inn öll slík pör sem gefa margfeldið 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Reiknaðu summuna fyrir hvert par.
a=-8 b=-3
Lausnin er parið sem gefur summuna -11.
\left(x^{2}-8x\right)+\left(-3x+24\right)
Endurskrifa x^{2}-11x+24 sem \left(x^{2}-8x\right)+\left(-3x+24\right).
x\left(x-8\right)-3\left(x-8\right)
Taktu x út fyrir sviga í fyrsta hópi og -3 í öðrum hópi.
\left(x-8\right)\left(x-3\right)
Taktu sameiginlega liðinn x-8 út fyrir sviga með því að nota dreifieiginleika.
x=8 x=3
Leystu x-8=0 og x-3=0 til að finna lausnir jöfnunnar.
x^{2}-11x+24=0
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 24}}{2}
Jafnan er í staðalformi: ax^{2}+bx+c=0. Settu 1 inn fyrir a, -11 inn fyrir b og 24 inn fyrir c í annars stigs formúlunni \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 24}}{2}
Hefðu -11 í annað veldi.
x=\frac{-\left(-11\right)±\sqrt{121-96}}{2}
Margfaldaðu -4 sinnum 24.
x=\frac{-\left(-11\right)±\sqrt{25}}{2}
Leggðu 121 saman við -96.
x=\frac{-\left(-11\right)±5}{2}
Finndu kvaðratrót 25.
x=\frac{11±5}{2}
Gagnstæð tala tölunnar -11 er 11.
x=\frac{16}{2}
Leystu nú jöfnuna x=\frac{11±5}{2} þegar ± er plús. Leggðu 11 saman við 5.
x=8
Deildu 16 með 2.
x=\frac{6}{2}
Leystu nú jöfnuna x=\frac{11±5}{2} þegar ± er mínus. Dragðu 5 frá 11.
x=3
Deildu 6 með 2.
x=8 x=3
Leyst var úr jöfnunni.
x^{2}-11x+24=0
Annars stigs jöfnur eins og þessa má leysa með því að færa í annað veldi. Til að uppfylla ferninginn þarf formúlan fyrst að vera í forminu x^{2}+bx=c.
x^{2}-11x+24-24=-24
Dragðu 24 frá báðum hliðum jöfnunar.
x^{2}-11x=-24
Ef 24 er dregið frá sjálfu sér verður 0 eftir.
x^{2}-11x+\left(-\frac{11}{2}\right)^{2}=-24+\left(-\frac{11}{2}\right)^{2}
Deildu -11, stuðli x-liðarins, með 2 til að fá -\frac{11}{2}. Leggðu síðan tvíveldi -\frac{11}{2} við báðar hliðar jöfnunnar. Þetta skref gerir vinstri hlið jöfnunnar að ferningstölu.
x^{2}-11x+\frac{121}{4}=-24+\frac{121}{4}
Hefðu -\frac{11}{2} í annað veldi með því að hefja bæði teljara og samnefnara brotsins í annað veldi.
x^{2}-11x+\frac{121}{4}=\frac{25}{4}
Leggðu -24 saman við \frac{121}{4}.
\left(x-\frac{11}{2}\right)^{2}=\frac{25}{4}
Stuðull x^{2}-11x+\frac{121}{4}. Almennt séð, þegar x^{2}+bx+c er ferningstala, er alltaf hægt að þátta hana sem \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Finndu kvaðratrót beggja hliða jöfnunar.
x-\frac{11}{2}=\frac{5}{2} x-\frac{11}{2}=-\frac{5}{2}
Einfaldaðu.
x=8 x=3
Leggðu \frac{11}{2} saman við báðar hliðar jöfnunar.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}