Beint í aðalefni
Stuðull
Tick mark Image
Meta
Tick mark Image
Graf

Svipuð vandamál úr vefleit

Deila

x^{2}+2x-5=0
Þætta má margliðu með færslunni ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), þar sem x_{1} og x_{2} eru rætur annars stigs jöfnunnar ax^{2}+bx+c=0.
x=\frac{-2±\sqrt{2^{2}-4\left(-5\right)}}{2}
Allar jöfnur eyðublaðsins ax^{2}+bx+c=0 má leysa með annars stigs formúlunni: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Annars stigs formúlan veitir tvær lausnir, eina þegar ± er bætt við og eina þegar það er dregið frá.
x=\frac{-2±\sqrt{4-4\left(-5\right)}}{2}
Hefðu 2 í annað veldi.
x=\frac{-2±\sqrt{4+20}}{2}
Margfaldaðu -4 sinnum -5.
x=\frac{-2±\sqrt{24}}{2}
Leggðu 4 saman við 20.
x=\frac{-2±2\sqrt{6}}{2}
Finndu kvaðratrót 24.
x=\frac{2\sqrt{6}-2}{2}
Leystu nú jöfnuna x=\frac{-2±2\sqrt{6}}{2} þegar ± er plús. Leggðu -2 saman við 2\sqrt{6}.
x=\sqrt{6}-1
Deildu -2+2\sqrt{6} með 2.
x=\frac{-2\sqrt{6}-2}{2}
Leystu nú jöfnuna x=\frac{-2±2\sqrt{6}}{2} þegar ± er mínus. Dragðu 2\sqrt{6} frá -2.
x=-\sqrt{6}-1
Deildu -2-2\sqrt{6} með 2.
x^{2}+2x-5=\left(x-\left(\sqrt{6}-1\right)\right)\left(x-\left(-\sqrt{6}-1\right)\right)
Þættu upprunalegu segðina með ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Skiptu -1+\sqrt{6} út fyrir x_{1} og -1-\sqrt{6} út fyrir x_{2}.