Leystu fyrir r (complex solution)
\left\{\begin{matrix}r=\frac{2\pi n_{1}i}{t}+\frac{\ln(\frac{x}{x_{0}})}{t}\text{, }n_{1}\in \mathrm{Z}\text{, }&t\neq 0\text{ and }x_{0}\neq 0\text{ and }x\neq 0\\r\in \mathrm{C}\text{, }&\left(x=0\text{ and }x_{0}=0\right)\text{ or }\left(x_{0}=x\text{ and }t=0\text{ and }x\neq 0\right)\end{matrix}\right.
Leystu fyrir t (complex solution)
\left\{\begin{matrix}t=\frac{2\pi n_{1}i}{r}+\frac{\ln(\frac{x}{x_{0}})}{r}\text{, }n_{1}\in \mathrm{Z}\text{, }&r\neq 0\text{ and }x_{0}\neq 0\text{ and }x\neq 0\\t\in \mathrm{C}\text{, }&\left(x=0\text{ and }x_{0}=0\right)\text{ or }\left(x_{0}=x\text{ and }r=0\text{ and }x\neq 0\right)\end{matrix}\right.
Leystu fyrir r
\left\{\begin{matrix}r=\frac{\ln(\frac{x}{x_{0}})}{t}\text{, }&\left(t\neq 0\text{ and }x>0\text{ and }x_{0}>0\right)\text{ or }\left(t\neq 0\text{ and }x<0\text{ and }x_{0}<0\right)\\r\in \mathrm{R}\text{, }&\left(x=0\text{ and }x_{0}=0\right)\text{ or }\left(x_{0}=x\text{ and }t=0\text{ and }x\neq 0\right)\end{matrix}\right.
Leystu fyrir t
\left\{\begin{matrix}t=\frac{\ln(\frac{x}{x_{0}})}{r}\text{, }&\left(r\neq 0\text{ and }x>0\text{ and }x_{0}>0\right)\text{ or }\left(r\neq 0\text{ and }x<0\text{ and }x_{0}<0\right)\\t\in \mathrm{R}\text{, }&\left(x=0\text{ and }x_{0}=0\right)\text{ or }\left(x_{0}=x\text{ and }r=0\text{ and }x\neq 0\right)\end{matrix}\right.
Graf
Spurningakeppni
Algebra
5 vandamál svipuð og:
x = x _ { 0 } e ^ { r t }
Deila
Afritað á klemmuspjald
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}