Leystu fyrir B
\left\{\begin{matrix}B=\frac{CT}{D}\text{, }&D\neq 0\\B\in \mathrm{R}\text{, }&E=0\text{ or }\left(C=0\text{ and }D=0\right)\text{ or }\left(T=0\text{ and }D=0\right)\end{matrix}\right.
Leystu fyrir C
\left\{\begin{matrix}C=\frac{BD}{T}\text{, }&T\neq 0\\C\in \mathrm{R}\text{, }&E=0\text{ or }\left(D=0\text{ and }T=0\right)\text{ or }\left(B=0\text{ and }T=0\right)\end{matrix}\right.
Deila
Afritað á klemmuspjald
DE^{2}B=CETE
Margfaldaðu E og E til að fá út E^{2}.
DE^{2}B=CE^{2}T
Margfaldaðu E og E til að fá út E^{2}.
DE^{2}B=CTE^{2}
Jafnan er í staðalformi.
\frac{DE^{2}B}{DE^{2}}=\frac{CTE^{2}}{DE^{2}}
Deildu báðum hliðum með DE^{2}.
B=\frac{CTE^{2}}{DE^{2}}
Að deila með DE^{2} afturkallar margföldun með DE^{2}.
B=\frac{CT}{D}
Deildu CE^{2}T með DE^{2}.
DE^{2}B=CETE
Margfaldaðu E og E til að fá út E^{2}.
DE^{2}B=CE^{2}T
Margfaldaðu E og E til að fá út E^{2}.
CE^{2}T=DE^{2}B
Skipta um hliðar svo allir liðir breytunnar séu vinstra megin.
TE^{2}C=BDE^{2}
Jafnan er í staðalformi.
\frac{TE^{2}C}{TE^{2}}=\frac{BDE^{2}}{TE^{2}}
Deildu báðum hliðum með E^{2}T.
C=\frac{BDE^{2}}{TE^{2}}
Að deila með E^{2}T afturkallar margföldun með E^{2}T.
C=\frac{BD}{T}
Deildu DE^{2}B með E^{2}T.
Dæmi
Annars stigs jafna
{ x } ^ { 2 } - 4 x - 5 = 0
Hornafræði
4 \sin \theta \cos \theta = 2 \sin \theta
Línuleg jafna
y = 3x + 4
Reikningslistarinnar
699 * 533
Uppistöðuefni
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samtímis jafna
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Aðgreining
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Heildun
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Takmörk
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}